We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Therapeutic Device Reduces Disability Following Stroke

By HospiMedica International staff writers
Posted on 22 Feb 2021
Artificial intelligence (AI) powered therapy generates electromagnetic fields that enhance recovery and reduce disability caused by ischemic stroke. More...


The BrainQ (Jerusalem, Israel) BQ System is a cloud-connected wearable device that delivers extremely low frequency low intensity electromagnetic fields (ELF-EMF), tailored to the individual patient. By measuring several electrophysiology measures, such as electroencephalography (EEG), electromyography (EMG), and magnetoencephalography (MEG), which characterize the neural oscillatory activity, the device can deliver the neuromodulatory ELF-EMF therapy at specific frequencies to influence these oscillations and aid neurorecovery.

The BQ System extends the window of opportunity for stroke treatment from several hours during the acute phase to days and even weeks in the sub-acute phase following stroke. The effect of ELF-EMF on recovery from neurological conditions include evidences of changes in calcium signaling, which is known to influence and mediate nearly all cellular processes; proliferation, as well as differentiation, of multiple cell types (including neurogenesis of neural stem cells); peripheral nerve regeneration; effects on polar molecules, likely responsible for the development of the neural projections; and changes in plasticity-related growth factor levels in humans.

“Stroke is a debilitating condition with limited recovery options, creating a huge unmet need in the United States. Covid-19 has only made things worse by limiting patients' access to treatment facilities,” said Yotam Drechsler, CEO and co-founder of BrainQ. “We are on the verge of a new era where AI- based precision medicine will be used to treat neurodisorders, which do not have a sufficient solution to date.”

Neuroplasticity describes the ability of neural networks in the brain to change through growth and reorganization. These changes range from individual neuron pathways making new connections, to systematic adjustments like cortical remapping. Neuroplasticity was once thought to exist only during childhood, but research has shown that activity-dependent plasticity, which can manifest even in adulthood, can have significant implications for recovery from brain damage.

Related Links:
BrainQ


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Mobile X-Ray System
K4W
LED Surgical Lamp
ACEMST35/57
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The use of NIR light beyond light therapy enables simultaneous wireless power transfer and communication to electronic IMDs (Photo courtesy of University of Oulu)

NIR Light Enables Powering and Communicating with Implantable Medical Devices

Implantable medical devices rely on wireless communication and long-lasting power sources to function safely inside the body, yet existing radio-based methods raise concerns around security, interference,... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.