We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Resistance-Sensing Needle Identifies Target Destinations

By HospiMedica International staff writers
Posted on 18 Mar 2019
A highly sensitive intelligent-injector for tissue-targeting (i2T2) needle can detect changes in resistance in order to properly and safely deliver medication, claims a new study.

Developed by researchers at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), Harvard Medical School (HMS; Boston, MA, USA), and Brigham and Women’s Hospital (BWH; Boston, MA, USA), the i2T2 intelligent injector is a highly sensitive, completely mechanical device that senses loss of tissue resistance when encountering a softer tissue or a cavity, causing it to stop advancing the needle and deliver the payload. More...
i2T2 feedback is instantaneous, which allows for better tissue targeting and minimal overshoot into an undesired location.

To test the device, the researchers used tissue from three animal models to examine delivery accuracy in the suprachoroidal (SCS), epidural, and peritoneal spaces, as well as subcutaneously. For example, they found it can be used to reliably deliver liquids to the SCS for a wide range of eye sizes, scleral thicknesses, and intraocular pressures. The injector could also deliver stem cells to the back of the eye that could be useful for regenerative therapies. The study was published on February 25, 2019, in Nature Biomedical Engineering.

“Targeting specific tissues using a conventional needle can be difficult, and often requires a highly trained individual. In the past century there has been minimal innovation to the needle itself, and we saw this as an opportunity to develop better, more accurate devices,” said senior corresponding author Professor Jeff Karp, PhD, of Brigham and Women’s Hospital. “We sought to achieve improved tissue targeting while keeping the design as simple as possible for ease of use.”

The SCS, which is located between the sclera and choroid in the back of the eye, has emerged as an important location for medication delivery. It is also a challenging site to target, because the needle must stop after transitioning through the sclera, which is less than one millimeter thick, to avoid damaging the retina. Additional tissues that are difficult to target include the epidural space around the spinal cord, used for epidural anesthesia, the peritoneal space in the abdomen, and subcutaneous tissue between the skin and muscles.

Related Links:
Massachusetts Institute of Technology
Harvard Medical School
Brigham and Women’s Hospital


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Pressure Guidewire
SavvyWire
Floor‑Mounted Digital X‑Ray System
MasteRad MX30+
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.