We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Proximity Sensation Enhances Robotic Surgery Fine Finger Control

By HospiMedica International staff writers
Posted on 11 May 2020
Transcutaneous pulsed electrical stimulation applied to the fingertips of robotic surgery teleoperators can provide an accurate perception of distance to contact, according to a new study.

Using a system developed at Texas A&M University (TAMU; College Station, TX, USA), the proximity sensations are delivered by passing different frequencies of electrical currents onto the fingertips via gloves fitted with stimulation probes. More...
The researchers then trained users to associate the pulsation frequency as inversely proportional to distance to target, so that an increase in pulsations provided an accurate perception of contact distance. If a teleoperator was sensitive to a wider range of frequencies, smaller steps were used in order to maximize accuracy.

They then compared if receiving the proximity stimulation, in addition to visual feedback information about closing distance displayed on surgical monitors, could provide a better solution for estimating contact proximity than those who received visual information alone. The found that the proximity data delivered through the mild electrical stimulation was about three times more effective than the visual information alone. Users receiving electrical pulses could also lower their force of contact by around 70%. The study was published in the January 2020 issue of Scientific Reports.

“One of the challenges with robotic fingers is ensuring that they can be controlled precisely enough to softly land on biological tissue,” said senior author Hangue Park, PhD, of the department of electrical and computer engineering. “With our design, surgeons will be able to get an intuitive sense of how far their robotic fingers are from contact, information they can then use to touch fragile structures with just the right amount of force.”

“This novel approach has the potential to significantly increase maneuverability during surgery, while minimizing risks of unintended tissue damage,” concluded Dr. Park. “When our technique is ready for use in surgical settings, physicians will be able to intuitively know how far their robotic fingers are from underlying structures, which means that they can keep their active focus on optimizing the surgical outcome of their patients.”

Although visual feedback plays a major role in delivering sensory information during human motor control with its incomparable information transfer capability, peripheral sensory feedback effectively compensates for limitations of visual feedback. For example, tactile feedback provides texture and pressure during the contact and interact phases; and proprioception at the muscles proximal to the fingertip provides useful spatial information, especially during the approach phase.

Related Links:
Texas A&M University


Gold Member
12-Channel ECG
CM1200B
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
New
Mammography System (Analog)
MAM VENUS
New
High-Precision QA Tool
DEXA Phantom
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: New clinical guidance suggests treatments to prevent blood clots in CLTI patients after leg artery procedures (Photo courtesy of Shutterstock)

Stronger Blood Clot Prevention Measures Needed After Leg Artery Procedures in High-Risk Patients

Chronic limb-threatening ischemia (CLTI), the most severe form of peripheral artery disease (PAD), significantly reduces blood flow to the legs and feet. Despite undergoing lower limb revascularization... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: A research collaboration aims to further advance findings in human genomics research in cardiovascular diseases (Photo courtesy of 123RF)

Bayer and Broad Institute Extend Research Collaboration to Develop New Cardiovascular Therapies

A research collaboration will focus on the joint discovery of novel therapeutic approaches based on findings in human genomics research related to cardiovascular diseases. Bayer (Berlin, Germany) and... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.