We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
IBA-Radcal

Download Mobile App




Implantable Device Functions as Soft Robot for Treating Muscle Atrophy

By HospiMedica International staff writers
Posted on 22 Nov 2022

Muscles waste as a result of not being exercised enough, as happens quickly with a broken limb that has been immobilized in a cast, and more slowly in people reaching an advanced age. More...

Muscle atrophy, how clinicians refer to the phenomenon, is also a debilitating symptom in patients suffering from neurological disorders, such as amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS), and can be a systemic response to various other diseases, including cancer and diabetes. Mechanotherapy, a form of therapy given by manual or mechanical means, is thought to have broad potential for tissue repair. The best-known example is massage, which applies compressive stimulation to muscles for their relaxation. However, it has been much less clear whether stretching and contracting muscles by external means can also be a treatment. So far, two major challenges have prevented such studies: limited mechanical systems capable of evenly generating stretching and contraction forces along the length of muscles, and inefficient delivery of these mechanical stimuli to the surface and into the deeper layers of muscle tissue.

Now, bioengineers at the Wyss Institute at Harvard University (Boston, MA, USA) have developed a mechanically active adhesive named MAGENTA, which functions as a soft robotic device and solves this two-fold problem. In an animal model, MAGENTA successfully prevented and supported the recovery from muscle atrophy. One of MAGENTA’s major components is an engineered spring made from nitinol, a type of metal known as “shape memory alloy” (SMA) that enables MAGENTA’s rapid actuation when heated to a certain temperature. The researchers actuated the spring by electrically wiring it to a microprocessor unit that allows the frequency and duration of the stretching and contraction cycles to be programmed.

The other components of MAGENTA are an elastomer matrix that forms the body of the device and insulates the heated SMA, and a “tough adhesive” that enables the device to be firmly adhered to muscle tissue. In this way, the device is aligned with the natural axis of muscle movement, transmitting the mechanical force generated by SMA deep into the muscle. The researchers are advancing MAGENTA, which stands for “mechanically active gel-elastomer-nitinol tissue adhesive,” as one of several Tough Gel Adhesives with functionalities tailored to various regenerative applications across multiple tissues.

After designing and assembling the MAGENTA device, the team tested its muscle deforming potential, first in isolated muscles ex vivo and then by implanting it on one of the major calf muscles of mice. The device did not induce any serious signs of tissue inflammation and damage, and exhibited a mechanical strain of about 15% on muscles, which matches their natural deformation during exercise. Next, to evaluate its therapeutic efficacy, the researchers used an in vivo model of muscle atrophy by immobilizing a mouse’s hind limb in a tiny cast-like enclosure for up to two weeks after implanting the MAGENTA device on it.

“While untreated muscles and muscles treated with the device but not stimulated significantly wasted away during this period, the actively stimulated muscles showed reduced muscle wasting,” said first-author and Wyss Technology Development Fellow Sungmin Nam, Ph.D. “Our approach could also promote the recovery of muscle mass that already had been lost over a three-week period of immobilization, and induce the activation of the major biochemical mechanotransduction pathways known to elicit protein synthesis and muscle growth.”

“With MAGENTA, we developed a new integrated multi-component system for the mechanostimulation of muscle that can be directly placed on muscle tissue to trigger key molecular pathways for growth,” said senior author and Wyss Founding Core Faculty member David Mooney, Ph.D. “While the study provides first proof-of-concept that externally provided stretching and contraction movements can prevent atrophy in an animal model, we think that the device’s core design can be broadly adapted to various disease settings where atrophy is a major issue.”

Related Links:
Wyss Institute at Harvard University


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Radiation Safety Barrier
RayShield Intensi-Barrier
Surgical Headlight
IsoTorch
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: A smartphone application displays a glucose concentration that was measured using the new sensor (Photo courtesy of Chuchu Chen and Yonghao Fu)

Wearable Device for Diabetics Could Replace Continuous Glucose Monitoring Systems

Monitoring blood glucose is essential for people with diabetes to prevent complications and maintain long-term health. Current continuous glucose monitoring systems require needles inserted under the skin,... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.