We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Radcal

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Photoacoustic Imaging Creates Detailed Images for Preventing Nerve Damage during Surgery

By HospiMedica International staff writers
Posted on 07 Sep 2023
Print article
Image: Experimental setup for in vivo photoacoustic imaging (Photo courtesy of SPIE)
Image: Experimental setup for in vivo photoacoustic imaging (Photo courtesy of SPIE)

Invasive medical procedures, often involving local anesthesia, carry a risk of nerve injury. Surgeons may inadvertently damage nerves during surgery by cutting, stretching, or compressing them, leading to lasting sensory and motor issues in patients. Similarly, patients receiving nerve blockades or other anesthesia can suffer nerve damage if the needle isn't precisely placed near the targeted peripheral nerve. To mitigate this risk, researchers are working on medical imaging techniques. Ultrasound and magnetic resonance imaging (MRI) can help surgeons locate nerves during a procedure. However, it's challenging to distinguish nerves from surrounding tissue in ultrasound images, and MRI is costly and time-consuming.

A promising alternative approach is multispectral photoacoustic imaging, a noninvasive technique that combines light and sound waves to create detailed body tissue and structure images. It involves illuminating the target area with pulsed light, causing slight heating and tissue expansion. This generates ultrasonic waves detected by an ultrasound detector. A research team from Johns Hopkins University (Baltimore, MD, USA) conducted a study characterizing the absorption and photoacoustic profiles of nerve tissue across the near-infrared (NIR) spectrum. They aimed to identify the ideal wavelengths for nerve tissue visualization in photoacoustic images, focusing on the NIR-III optical window (1630–1850 nm). Nerve myelin sheaths contain lipids with a characteristic absorption peak in this range.

Their experiments on peripheral nerve samples from swine revealed an absorption peak at 1210 nm, falling in the NIR-II range but also present in other lipids. However, when water contribution was subtracted, nerve tissue showed a unique peak at 1725 nm in the NIR-III range. Photoacoustic measurements on live swine's peripheral nerves using custom imaging confirmed that the NIR-III band peak effectively distinguishes lipid-rich nerve tissue from others containing water or lacking lipids. These findings may encourage further exploration of photoacoustic imaging's potential and enhance nerve detection and segmentation techniques in other optical imaging methods.

“Our work is the first to characterize the optical absorbance spectra of fresh swine nerve samples using a wide spectrum of wavelengths, as well as the first to demonstrate in-vivo visualization of healthy and regenerated swine nerves with multispectral photoacoustic imaging in the NIR-III window,” said Dr. Muyinatu A. Lediju Bell who led the research team. “Our results highlight the clinical promise of multispectral photoacoustic imaging as an intraoperative technique for determining the presence of myelinated nerves or preventing nerve injury during medical interventions, with possible implications for other optics-based technologies. Our contributions thus successfully establish a new scientific foundation for the biomedical optics community.”

Related Links:
Johns Hopkins University 

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Hemoconcentrator
Hemocor HPH

Print article

Channels

Critical Care

view channel
Image: The first healthcare device to be powered by body heat was made possible by the use of liquid-based metals (Photo courtesy of Carnegie Mellon)

Healthcare Device Powered By Body Heat Marks First Step Toward Battery-Free Wearable Electronics

Portable, wearable electronics for physiological monitoring are gaining preference over traditional tethered devices in clinical settings due to their convenience for continuous or frequent monitoring.... Read more

Surgical Techniques

view channel
Image: Electronic prompt for surgeons may reduce breast cancer overtreatment (Photo courtesy of 123RF)

EHR–Based Nudge Intervention for Surgeons to Reduce Breast Cancer Overtreatment

Sentinel lymph node biopsy (SLNB) is a critical surgical technique used to assess if breast cancer has spread to the underarm lymph nodes, although it's not necessary for all patients. Undergoing SLNB... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.