We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
77 ELEKTRONIKA

Download Mobile App




Events

31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Novel Smart Implants to Continuously Monitor and Actively Promote Bone Healing

By HospiMedica International staff writers
Posted on 29 Mar 2024
Print article
Image: The artificial muscles can help fractured leg bones heal better (Photo courtesy of Saarland University)
Image: The artificial muscles can help fractured leg bones heal better (Photo courtesy of Saarland University)

Bones possess a unique blend of stability and elasticity; they not only grow and renew themselves but are also designed to endure substantial force. In cases where a bone fractures, healing can occur if the pieces are correctly aligned. However, complications may arise, particularly in lower leg fractures, which fail to heal properly in approximately 14 out of every 100 instances. After surgery, monitoring the healing process internally is not feasible until an X-ray provides the first view weeks later, potentially revealing inadequate bone tissue growth. Such scenarios can lead to pain, inability to work, and significant costs. Now, a new type of orthopedic implant can continuously monitor the fracture repair process and actively facilitate bone healing.

An interdisciplinary team of medical specialists, engineers, and computer scientists at Saarland University (Saarbrücken, Germany) has developed smart implants that can continuously monitor and actively promote bone healing, such as by micro-massaging the fracture site. These orthopedic implants are not ordinary fixation plates used for stabilizing fractures; they are equipped with innovative 'artificial muscles' made from shape memory wires, allowing for the control of the healing process through a smartphone. The smart implants start transmitting data on the healing progress immediately after surgery without the need for further procedures or equipment. It also alerts the patient if excessive pressure is applied to the healing fracture.

These implants, once positioned, autonomously promote healing. At the fracture gap, where the bone fragments have been realigned with each other, they can adjust their rigidity or even perform subtle movements to 'micro-massage' the area, thereby enhancing healing by stimulating bone growth. These actions can be fully automated and managed via a smartphone while its powerful battery can be charged remotely through wireless induction, ensuring a seamless and innovative approach to managing and enhancing the bone healing process.

“We're developing a smart implant that does not require any additional surgical intervention or additional equipment. An orthopedic implant is typically a passive fixation plate that is used to set and stabilize the fractured bone. But we can now give it completely new capabilities,” explained Professor Stefan Seelecke, who heads research groups at Saarland University.

Related Links:
Saarland University

Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Gold Member
12-Channel ECG
CM1200B
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Washer Disinfector
TIVA 10-M

Print article

Channels

Critical Care

view channel
Image: The first healthcare device to be powered by body heat was made possible by the use of liquid-based metals (Photo courtesy of Carnegie Mellon)

Healthcare Device Powered By Body Heat Marks First Step Toward Battery-Free Wearable Electronics

Portable, wearable electronics for physiological monitoring are gaining preference over traditional tethered devices in clinical settings due to their convenience for continuous or frequent monitoring.... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more

Business

view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.