We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App


31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

Robotic Ultrasound Systems to Assist Doctors during Surgery

By HospiMedica International staff writers
Posted on 31 May 2024
Print article
Image: TUM Professor Nassir Navab conducts research into robotic ultrasound (Photo courtesy of Fabian Vogel/TUM)
Image: TUM Professor Nassir Navab conducts research into robotic ultrasound (Photo courtesy of Fabian Vogel/TUM)

Ultrasound technology was first introduced in medical diagnostics 60 years ago, with the introduction of the first remotely controllable ultrasound machine occurring 20 years ago. Now, the medical field is on the brink of another significant advancement—the advent of autonomous ultrasound systems. Current research indicates that robotic ultrasound systems capable of conducting routine examinations autonomously and assisting doctors in the operating theater could greatly simplify the daily routines of medical professionals.

Professor Nassir Navab from the Technical University of Munich (TUM, Munich, Germany) leads a unique lab where experts in artificial intelligence, computer vision, medicine, and robotics collaborate. The initial prototypes from Navab’s lab demonstrate how these cutting-edge technologies can be applied in medical settings and surgical environments. A novel robotic system developed in his lab allows for ultrasound examinations to be conducted without a doctor's direct involvement. This system features an ultrasound probe mounted on a robotic arm, which can autonomously perform scans on a patient's forearm or abdomen. It automatically generates 3D images of internal vessels and measures physiological parameters like blood flow velocity, thus freeing doctors from routine examination tasks. Additionally, the system can detect abnormalities, such as vessel constrictions, providing doctors with immediate results to focus more on patient care and consultation.

While routine ultrasound examinations can be autonomously conducted and standardized for research purposes, this autonomous technology also finds application in surgical environments, such as during spinal surgeries. In these scenarios, Prof. Navab’s team employs a "shared control" strategy. Surgeons have the option to use the ultrasound in the traditional manner or rely on the autonomous function to keep their hands free during procedures. For instance, the system can autonomously provide images of a specific region when a doctor is performing injections into a vertebral joint, without interfering with the surgical process. The system also uses machine learning to review the images for any signs of vertebral fractures. Autonomous robotic ultrasound systems bring numerous advantages, including the ability to produce 3D ultrasound images, ensure comparability of data, and perform health scans without the need for medical personnel on-site.

Before these robotic systems are operational, Prof. Navab emphasizes the importance of "confidence-building measures" to acclimate patients to the robotic system. His team is investigating ways to facilitate human-machine interaction to create a comfortable and safe experience. The introduction process includes an animated demonstration of the examination procedure, detailing the robot’s movements. This helps patients understand what to expect during the scan. To build further trust, the robot demonstrates its functionality through simple, non-critical interactions, like a symbolic high five, showing patients that the system is aware of its surroundings and can adjust to movement. Such precautions ensure that the robot, as it applies gel and moves the ultrasound probe across the abdomen with precise movements and pressure, is safe and non-threatening.

"People are already measuring their pulse, body temperature and blood pressure with their smartwatch or other digital applications," explained Prof. Navab. "They will certainly be open to having ultrasound examinations carried out with the help of robotic systems."

Related Links:

Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Compact 14-Day Uninterrupted Holter ECG
Total Body Fat Analyzer

Print article


Critical Care

view channel
Image: The lithium-ion battery has entirely stretchable components and stable charging and discharging capacity over time (Photo courtesy of ACS Energy Letters 2024, DOI: 10.1021/acsenergylett.4c01254)

Fully Stretchable Solid Lithium-Ion Battery Paves Way For Flexible Wearable and Implantable Devices

Electronics designed to bend and stretch require batteries that possess the same flexible characteristics. Many attempts to construct such batteries have utilized conductive fabric woven into expandable... Read more

Surgical Techniques

view channel
Image: The ExcelsiusFlex and ACTIFY 3D Total Knee System have been granted FDA 510(k) clearance (Photo courtesy of Globus Medical)

New Robotic Navigation Platform Provides Surgeons Best-In-Class Solution for Orthopedic Treatment

Globus Medical (Audubon, PA, USA) has secured 510(k) clearance from the U.S. Food and Drug Administration (FDA) for its new robotic navigation platform, ExcelsiusFlex, tailored for total knee arthroplasty... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more


view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.