We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Tiny Mechanical Wrist Advances Needlescopic Surgery

By HospiMedica International staff writers
Posted on 10 Aug 2015
Print article
Image: A curette mounted upon the tiny nitinol wrist (Photo courtesy of Vanderbilt University).
Image: A curette mounted upon the tiny nitinol wrist (Photo courtesy of Vanderbilt University).
Surgical robots with steerable needles can now be equipped with tiny mechanical wrists that give new dexterity to needlescopic (microlaparoscopic) surgery.

Developed by researchers at Vanderbilt University (Nashville, TN, USA) the new wrists are less than 2-mm thick, and are designed to provide needlescopic tools with a degree of dexterity previously lacking. Not only will this allow surgeon-operators to perform a number of new procedures (such as precise resections and suturing that have not been possible previously), but it will also allow the use of needles in places that have so far been beyond reach, such as the nose, throat, ears, and brain.

Needlscopic concentric tube robots are based on a series of telescoping tubes made of nitinol. Each of the tubes has a different intrinsic curvature; by precisely rotating, extending, and retracting the tubes, an operator can steer the tip in different directions, allowing it to follow a curving path through the body. The design allows the needles to operate in areas of the body that neither manual endoscopic instruments nor the da Vinci robot can reach. However, the usefulness of concentric tube robots was limited by the fact that the needles didn’t have a wrist.

The researchers therefore developed a wrist that also consists of a nitinol tube, but with several asymmetric cutouts. Pulling on an actuation tendon that runs through it causes the tube to bend by up to 90 degrees; when tension on the tendon is released, the tube springs back to its original shape. The researchers mounted a curette on the tiny (1.16 mm) wrist, and succeeded in bending it in various directions. The study describing the new wrist was presented at the annual International Conference on Robotics and Automation, held during May 2015 in Seattle (WA, USA).

“Adding the wrists to the steerable needles greatly expands the system’s usefulness. There are a myriad of potential applications in some really exciting areas such as endoscopic neurosurgery, operating within small lumens such as the ear, bronchus, urethra, etc.,” added professor of urological surgery S. Duke Herrell, MD, who is consulting on the project. “This would allow us to do surgeries that at present require much larger incisions and may even enable us to perform operations that are not feasible at present.”

Related Links:

Vanderbilt University


Gold Member
12-Channel ECG
CM1200B
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Digital Radiography Generator
meX+20BT lite

Print article

Channels

Critical Care

view channel
Image: Researchers have developed an advanced shear-thinning hydrogel for aneurysm repair (Photo courtesy of TIBI)

New Hydrogel Features Enhanced Capabilities for Treating Aneurysms and Halting Progression

Aneurysms can develop in blood vessels in different body areas, often as a result of atherosclerosis, infections, inflammatory diseases, and other risk factors. These conditions lead to chronic inflammation,... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.