We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ARAB HEALTH - INFORMA

Download Mobile App




Soft Continuum Robots Wind through Brain Pathways

By HospiMedica International staff writers
Posted on 11 Sep 2019
Print article
Image: A thread-like robot winds its way through a simulated brain (Photo courtesy of MIT).
Image: A thread-like robot winds its way through a simulated brain (Photo courtesy of MIT).
A new study shows how a magnetically steerable miniature robot can actively glide through narrow, winding pathways, such as the labyrinthine vasculature of the brain.

Under development at the Massachusetts Institute of Technology (MIT; Cambridge, MA, USA), the self-lubricating soft continuum robot is composed of a core of nickel-titanium alloy, a homogeneous soft polymer matrix shell with uniformly dispersed ferromagnetic microparticles, and a biocompatible hydrogel skin that envelopes the surface, reducing friction by more than 10 times. The robots navigation is via omnidirectional steering based on magnetic actuation, enabled by programming ferromagnetic domains in the continuum soft body domain.

The robot is on the submillimeter-scale, and can be miniaturized below a few hundreds of micrometers in diameter, allowing it to navigate through complex and constrained environments. For the study, the researchers used a tortuous cerebrovascular silicon phantom with multiple aneurysms. The continuum robot was activated using a large magnet to steer it through the winding, narrow silicone vessels, which were filled with a liquid simulating the viscosity of blood. According to the researchers, the robot can also be functionalized so as to deliver clot-reducing drugs or break up blockages with laser light. The study was published on August 28, 2019, in Science Robotics.

“Existing platforms could apply magnetic field and do the fluoroscopy procedure at the same time to the patient, and the doctor could be in the other room, or even in a different city, controlling the magnetic field with a joystick,” said lead author Yoonho Kim, MSc, a graduate student in the MIT department of mechanical engineering. “Our hope is to leverage existing technologies to test our robotic thread in vivo in the next step.”

“Stroke is the number five cause of death and a leading cause of disability in the United States. If acute stroke can be treated within the first 90 minutes or so, patients' survival rates could increase significantly,” said senior author Xuanhe Zhao, PhD, an associate professor of mechanical engineering and of civil and environmental engineering at MIT. “If we could design a device to reverse blood vessel blockage within this ‘golden hour’, we could potentially avoid permanent brain damage. That's our hope.”

Related Links:
Massachusetts Institute of Technology

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
12-Channel ECG
CM1200B
New
Cannulating Sphincterotome
TRUEtome
New
LED Surgical Light
Convelar 1670 LED+/1675 LED+/1677 LED+

Print article

Channels

Critical Care

view channel
Image: Various sensors might be helpful at different ages (Photo courtesy of Brasier et al./Nature, 2024)

New Generation of Wearable Sensors to Perform Biochemical Analysis of Body Fluids

Wearable devices are already capable of monitoring vital body functions, such as pulse with a smartwatch or blood pressure with a smartphone app. While these sensors can provide reliable real-time data... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The acoustic pipette uses sound waves to test for biomarkers in blood (Photo courtesy of Patrick Campbell/CU Boulder)

Handheld, Sound-Based Diagnostic System Delivers Bedside Blood Test Results in An Hour

Patients who go to a doctor for a blood test often have to contend with a needle and syringe, followed by a long wait—sometimes hours or even days—for lab results. Scientists have been working hard to... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.