We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Chimeric Hybrid Silkworms Could Improve Surgical Sutures

By HospiMedica International staff writers
Posted on 19 Jan 2012
Print article
Transgenically engineered silkworms could spin silk almost as strong as spider silk, which could possibly be used to make sutures, artificial limbs, tendons, tissue scaffolds, and microcapsules.

Researchers at the University of Notre Dame (IN, USA) used piggyBac (PB) vectors to create transgenic silkworms that produced composite silk fibers with chimeric silkworm/spider silk proteins that were integrated in an extremely stable manner. These composite fibers were (on average), tougher than the parental silkworm silk fibers, and were as tough as native dragline spider silk fibers. The thread produced by the transgenic silkworms has a relative strength and flexibility of 80% to that of native spider silk. To ensure the silkworms were been genetically modified, a gene gave the transgenic silkworms red glowing eyes was also included.

PiggyBac transposon vectors mobilize via a "cut-and-paste" mechanism, reintegrating at other sites within the genome. PB transposase specifically recognizes PB inverted terminal repeats (ITRs) that flank the transposon, binding to these sequences and catalyzing the excision of the transposon. PB then integrates at TTAA sites throughout the genome, in a relatively random fashion. For the creation of transgenic animals, the transposase is supplied cotransfected with a plasmid containing donor transposon; subsequent integration within a coding region captures the elements necessary for gene expression. The findings were published ahead of print on January 3, 2012, in the Proceedings of the National Academy of Sciences (PNAS).

“These results demonstrate that silkworms can be engineered to manufacture composite silk fibers containing stably integrated spider silk protein sequences, which significantly improve the overall mechanical properties of the parental silkworm silk fibers,” concluded lead author Prof. Malcolm Fraser, PhD, and colleagues of the department of biomedical sciences.

Commercial production of spider silk is impractical, since spiders are too cannibalistic and territorial for farming. Researchers have experimented with producing the stronger material in other organisms, including bacteria, insects, mammals, and plants, but those proteins require mechanical spinning - a task the silkworms perform naturally. The stronger fiber could find application in sutures, where some natural silkworm silk is used, as well as wound dressings, artificial ligaments, cosmetics, parachute cords, and textiles.

Related Links:

University of Notre Dame



Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Surgical Table
STERIS 5085 SRT

Print article

Channels

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.