We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Mineral Bone Pins Designed to Help Secure Healing Fractures

By HospiMedica International staff writers
Posted on 28 Jan 2019
Novel bio-integrative bone pins aim to replace the metal fixation implants currently used in fractures, bone cuttings or removals, joint fusions, and bone grafts.

The Ossio (Caesarea, Israel) OSSIOfiber Bone Pin Family is based on Intelligent Bone Regeneration Technology, a new category of non-permanent fixation materials made of a proprietary natural mineral fiber matrix with bio-integrative properties, which provide surgeons with a biologically friendly way to restore stability and mobility while foregoing permanent metal fixation. More...
The stiffness of OSSIOfiber is also a better mechanical match to bone, and the improved bone compliance can prevent stress risers and weakening of the bone around the implant.

While initially the mechanical strength of the implant is significantly higher than that of cortical bone, it gradually transfers load to the native bone following the critical rehabilitation phase. Full integration into the surrounding anatomy takes place within approximately 18-24 months, leaving only native bone behind with no residual hardware. The company intends to pursue multiple applications in the distal extremity, trauma, sports, reconstruction, pediatrics, and spine segments through the development of pins, screws, and plates.

“We look forward to partnering with surgeons throughout the United States to integrate the OSSIOfiber platform into their surgical treatment options, ultimately changing the current standard-of-care in orthopedic fixation by encouraging natural bone healing that avoids unnecessary hardware removal surgeries, and improves the overall healthcare economics of orthopedics,” said Brian Verrier, CEO of Ossio.

“OSSIOfiber Intelligent Bone Regeneration Technology has the potential to shift the paradigm in orthopedic fixation with promise for wide-ranging applications across the continuum of orthopedic surgery,” said orthopedic surgeon Stuart Miller, MD, of Johns Hopkins University School of Medicine (Baltimore, MD, USA). “An implant that maintains its strength through the known healing timeline, and is then completely integrated into the surrounding anatomy with no adverse inflammation is a real breakthrough for surgeons and the patients we treat.”

Metal implants represent the current standard of care in orthopedic fixation; however, permanent hardware creates a sub-optimal healing environment, which can lead to patient dissatisfaction and increasing healthcare costs due to post-operative complications and secondary removal surgeries. Over the course of the last few decades, there have been numerous attempts to develop fixation implants from various bio-resorbable materials, but these devices have fallen short in providing the required mechanical strength or optimal degradation profiles to avoid burst releases of acidic by-products and local inflammation.

Related Links:
Ossio


Gold Member
12-Channel ECG
CM1200B
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Absorbable Monofilament Mesh
Phasix Mesh
IV Therapy Cart
Avalo I.V Therapy Cart
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The 3D-printed microneedle patch boosts live-virus vaccine delivery (Photo courtesy of IIS/University of Tokyo)

3D-Printed Delivery System Enhances Vaccine Delivery Via Microneedle Array Patch

The COVID-19 pandemic underscored the need for efficient, durable, and widely accessible vaccines. Conventional vaccination requires trained personnel and cold-chain logistics, which can slow mass immunization... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.