Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Nanotube Carbon Fibers Can Rewire Damaged Hearts

By HospiMedica International staff writers
Posted on 05 Sep 2019
A new study shows that carbon nanotube fibers (CNTfs) can restore electrical conduction in the diseased myocardium, offering a potential long-term restorative solution.

Researchers at the Texas Heart Institute (THI; Houston, TX, USA), Rice University (Rice, Houston, TX, USA), and other institutions conducted open chest electrophysiology studies to examine the characteristics of CNTfs, which combine the mechanical properties of surgical suture materials and the conductive properties of metals, and their suitability as a restorative solution to impaired myocardial conduction. More...
To do so, the researchers first used radiofrequency (RF) ablation to create an epicardial conduction delay. They then sutured CNTf sutures over the conduction block.

The results revealed that in large animals (sheep), an improvement in conduction velocity using CNTf was demonstrated. In an acute rodent model, in which the CNTfs were surgically sewn across the right atrioventricular junction, ventricular pre-excitation was shown during sinus rhythm. All chronic cases demonstrated resumption of atrioventricular conduction, but these required atrial pacing. There was no gross or histopathologic evidence of toxicity. Ex-vivo electrical analysis of the CNTf-myocardial interface demonstrated contact impedance significantly lower than that of platinum iridium. The study was published on August 12, 2019, in Circulation: Arrhythmia and Electrophysiology.

“Instead of shocking and defibrillating, we are actually correcting diseased conduction of the largest major pumping chamber of the heart by creating a bridge to bypass and conduct over a scarred area of a damaged heart,” said co-lead author cardiologist Mehdi Razavi, MD, of THI. “Our experiments provided the first scientific support for using a synthetic material-based treatment rather than a drug to treat the leading cause of sudden death in the United States and many developing countries around the world.”

“Flexibility is important, because the heart is continuously pulsating and moving, so anything that’s attached to the heart’s surface is going to be deformed and flexed. Good interfacial contact is also critical to pick up and deliver the electrical signal,” said co-lead author chemical and biomolecular engineer Matteo Pasquali, PhD, of Rice. “In the past, multiple materials had to be combined to attain both electrical conductivity and effective contacts. These fibers have both properties built in by design, which greatly simplifies device construction and lowers risks of long-term failure due to delamination of multiple layers or coatings.”

CNTfs are about a quarter of the thickness of a human hair, but still contain millions of microscopic nanotubes of pure carbon. The fibers, which are soft, flexible, and tough, also exhibit low electrical impedance. As such, they show potential for many applications, including helping Parkinson's disease (PD) patients who require brain implants to treat their neurological conditions.

Related Links:
Texas Heart Institute
Rice University


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
VTE Prevention System
Flowtron ACS900
Neonatal Ventilator Simulation Device
Disposable Infant Test Lung
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.