We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




New Polymer Heart Valve Implanted in First Human Patient

By HospiMedica International staff writers
Posted on 09 Oct 2019
Print article
Image: The Tria, an advanced biopolymer heart valve (Photo courtesy of Beaumont Hospital).
Image: The Tria, an advanced biopolymer heart valve (Photo courtesy of Beaumont Hospital).
Next-generation implantable biopolymer heart valves last longer, are cheaper to manufacture and are more biocompatible than currently available options.

Developed at the California Institute of Technology (Caltech; Pasadena, USA) and manufactured by Foldax (Salt Lake City, UT, USA), the Tria heart valve combines LifePolymer, an advanced biopolymer material, and a patented bioinspired design in order to create a heart valve capable of lasting for decades without calcification, risk of clotting, or damage to red blood cells (RBCs). During testing, one valve has already lasted for 600 million cycles, the equivalent of around 15 years, without signs of significant wear and tear.

The proprietary biopolymer material and design of the Tria heart valves also allows for high volume manufacturing, as well as potentially lowering the cost of future medical care, since adverse events associated with using animal tissue valves and the accompanying durability and calcification concerns are eliminated. The valves are also robotically manufactured, eliminating the variability of human production, thus providing the highest level of quality and precision. The complete Tria platform will include valves developed for use in aortic and mitral valve disease with transcatheter and surgical applications.

"It's a powerful combination of the bioinspired design and advanced engineering that we have at Caltech,” said Professor Mory Gharib, PhD, of the CalTech Division of Engineering and Applied Science, and also co-founder of Foldax, following the implantation of the first valve in a patient with aortic valve disease at Beaumont Hospital (Royal Oak, MI, USA), as part of an FDA Early Feasibility Study. “This is among my proudest moments. Creating something with the potential to save and improve lives is one of the reasons I became an engineer.”

Mechanical heart valves are the most long-lasting type of replacement valve, but patients will usually require blood thinners to stop clots from forming, as they can lodge in valve flaps or hinges which can cause a malfunction or form emboli. Bioprosthetic tissue can last 10-20 years, and do not require long-term use of medication. On the other hand, a young person with a bioprosthetic valve replacement, the need for additional surgery or another valve replacement later in life is highly likely.

Related Links:
California Institute of Technology
Foldax

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
High Power Laser System
Dornier Thulio

Print article

Channels

Critical Care

view channel
Image: Researchers have developed a novel risk score for cardiovascular complications after bone marrow transplant (Photo courtesy of 123RF)

Novel Tool Predicts Cardiovascular Risks after Bone Marrow Transplantation

Every year, thousands of people undergo bone marrow transplants to potentially cure serious diseases like leukemia, lymphoma, and immune deficiency disorders. While these transplants can be lifesaving,... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.