We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Ampronix,  Inc

Download Mobile App




Events

ATTENTION: Due to the CORONAVIRUS EPIDEMIC, certain events are being rescheduled for a later date or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
06 May 2020 - 09 May 2020

Synthetic Nerve Conduit Helps Regrow Damaged Nerves

By HospiMedica International staff writers
Posted on 05 Feb 2020
Print article
Image: The 5.2 cm GDNF-releasing nerve guide (Photo courtesy of Pitt)
Image: The 5.2 cm GDNF-releasing nerve guide (Photo courtesy of Pitt)
A biodegradable polymer nerve guide filled with a neurotrophic factor can regenerate long sections of damaged nerves, according to a new study.

Developed at the University of Pittsburgh (Pitt; PA, USA), the off-the-shelf biodegradable nerve guide is a tube-shaped acellular conduit with glial cell-derived neurotrophic factor (GDNF) filled microspheres embedded in its walls. GDNF is released from the microspheres slowly, over the course of several months, in order to support and sustain the survival of the severed neurons so that they can regenerate long stretches (over eight mm) of peripheral nerve, without the need for transplanting stem cells or a donor nerve.

To test the conduits, the researchers removed five cm segments of nerve from the forearms of macaque monkeys. The monkeys were then implanted with either the GDNF conduit, an empty polymer tube, or the gold standard, a nerve graft. The animals that received the conduits had increased nerve conduction velocity, greater Schwann cell recruitment, and a similar functional recovery as those treated with an autografts. The empty guide performed significantly worse. The study was published on January 22, 2020, in Science Translational Medicine.

“Injuries to peripheral nerves that result in small gaps can heal after reapproximation; however, large gaps that occur after severe injuries require autograft implantation,” said senior author professor of plastic surgery Kacey Marra, MD, PhD, of the Pitt McGowan Institute for Regenerative Medicine. “We're the first to show a nerve guide without any cells was able to bridge a large, two-inch gap between the nerve stump and its target muscle. Our guide was comparable to, and in some ways better than, a nerve graft.”

The recombinant form of GDNF promotes the survival and differentiation of dopaminergic neurons, and prevents apoptosis of motor neurons induced by axotomy. GDNF also regulates kidney development and spermatogenesis.

Related Links:
University of Pittsburgh


Print article

Channels

Business

view channel
Illustration

Surgical Robots Market to Reach USD 13.1 Billion by 2027 Due to High Acceptance in Emerging Regions

The global surgical robots market is forecasted to reach USD 13.1 billion by 2027, driven mainly by low turn-around times and increased innovation in robotics over the coming years. Surgical robots are... Read more
Copyright © 2000-2020 Globetech Media. All rights reserved.