We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Feather Safety Razor

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Nanotechnology Approach Locates and Removes Dangerous Endometriosis Lesions

By HospiMedica International staff writers
Posted on 27 Apr 2022
Print article
Image: Nanoparticles show promise for locating, removing endometriosis lesions (Photo courtesy of OSU)
Image: Nanoparticles show promise for locating, removing endometriosis lesions (Photo courtesy of OSU)

Endometriosis is a common gynecological condition in women of childbearing age. The endometrium is the innermost layer of the uterus, and endometriosis occurs when endometrium-like tissue forms lesions outside of the uterine cavity – usually involving the ovaries, the fallopian tubes and the tissue lining the pelvis. On rare occasions, endometrial tissue may spread beyond the pelvic region. There’s no cure for endometriosis, although surgical removal of the lesions can improve fertility. The downside, however, is that the lesions come back about half the time, and more than one-quarter of endometriosis surgery patients need three or more operations because it’s hard to find all of the diseased tissue that needs to be removed. Scientists have now developed a new nanotechnology approach for locating and removing the painful and dangerous lesions associated with endometriosis.

The research led by scientists at the Oregon State University (OSU, Corvallis, OR, USA) involves magnetic nanoparticles - tiny pieces of matter as small as one-billionth of a meter. An animal-model study showed that the iron oxide nanoparticles, injected intravenously, act as a contrast agent – they accumulate in the lesions, making them easier to see by advanced imaging such as MRI. And when exposed to an alternating magnetic field, a non-invasive procedure, the nanoparticles’ temperature soars to more than 120 degrees Fahrenheit, high enough for lesion removal via heat.

Magnetic hyperthermia had not previously been considered as a potential means of ablating endometriosis lesions because other magnetic nanoparticles have relatively low heating efficiency. The nanoparticles could only get hot enough after being directly injected into diseased tissue, which is not a realistic approach for endometriosis. The researchers overcame that problem by developing hexagonal-shaped nanoparticles that have more than six times the heating efficiency of conventional spherical nanoparticles when subjected to an alternating magnetic field.

Modifying the nanoparticles with a peptide - multiple amino acids linked in a chain – that targets a cellular receptor abundant in endometriosis cells enhanced their ability to accumulate in endometriosis lesions, the scientists said. Studies of mice with endometriotic tissue transplanted from macaques demonstrated the nanoparticles’ ability to eradicate the diseased cells following one session of magnetic hyperthermia.

“Endometriosis is a debilitating, systemic disease, and the need for an efficient, non-surgical method of removing the lesions is urgent,” said Oleh Taratula of the Oregon State University College of Pharmacy who led the research. “We invented targeted nanoparticles with extraordinary heating capabilities that enable the use of magnetic hyperthermia for the safe and efficient elimination of endometriosis lesions.”

Related Links:
Oregon State University 


Print article

Channels

Critical Care

view channel
Image: EsoGuard has demonstrated over 90% specificity and 90% sensitivity in identifying Barrett’s Esophagus (Photo courtesy of Lucid Diagnostics)

Biomarker Based Non-Endoscopic Technology Identifies Risk for Esophageal Cancer

Barrett's esophagus (BE) is the benign and treatable precursor condition to esophageal adenocarcinomas (EAC) which is usually diagnosed at an advanced stage and is difficult to treat. Finding BE, a sign... Read more

Patient Care

view channel
Image: Future wearable health tech could measure gases released from skin (Photo courtesy of Pexels)

Wearable Health Tech Could Measure Gases Released From Skin to Monitor Metabolic Diseases

Most research on measuring human biomarkers, which are measures of a body’s health, rely on electrical signals to sense the chemicals excreted in sweat. But sensors that rely on perspiration often require... Read more

Health IT

view channel
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.