We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Copper-Coated Hospital Uniforms Reduce Bacterial Spread

By HospiMedica International staff writers
Posted on 27 Feb 2018
Tethering copper (Cu) nanoparticles to wearable materials such as cotton and polyester could help reduce the spread of bacterial infections and viruses, claims a new study.

Researchers at the University of Manchester (United Kingdom), Southwest University (Chongqing, China), and other institutions conducted an experimental study that applied antibacterial copper nanoparticles coatings onto cotton and polymer substrates using atom transfer radical polymerization (ATRP) and electroless deposition (ELD) processes. More...
The researchers used polymer brushes in order to continuously and uniformly distribute the Cu nanoparticles onto the fiber surfaces of the substrate.

The results showed that the composite materials possessed excellent antibacterial properties, even after 30 cycles of washing, as a result of the strong bridged-deposited interfacial force created between the antibacterial copper coatings and the substrates by the polymer brushes. Compared with copper coating using traditional processes, the polymer brush coating process showed longer releasing effectiveness and higher releasing concentration, which was attributed to the free-standing copper nanoparticles. The study was published on January 29, 2018, in Journal of Nanomaterials.

“Now that our composite materials present excellent antibacterial properties and durability, it has huge potential for modern medical and healthcare applications. These results are very positive, and some companies are already showing interest in developing this technology,” said senior author Xuqing Liu, PhD, of the University of Manchester School of Materials. “We hope we can commercialize the advanced technology within a couple of years. We have now started to work on reducing cost and making the process even simpler.”

Precious metals such as gold and silver have excellent antibacterial and antimicrobial properties, but their commercial use in textiles is prohibitive due to extremely high costs. As a result, material chemists are focusing their attentions on exploring the possibility of using copper as the ultimate antimicrobial agent. But techniques for binding copper to materials like cotton for medical and antimicrobial textile production had limitations. Now, using polymer surface grafting, copper nanoparticles can be joined to cotton and polyester using a polymer brush to create a strong chemical bond.

Related Links:
University of Manchester
Southwest University


Gold Member
12-Channel ECG
CM1200B
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
VTE Prevention System
Flowtron ACS900
LED Surgical Lamp
ACEMST35/57
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.