We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Electric-Field-Based Dressing Disrupts Biofilm Infection

By HospiMedica International staff writers
Posted on 05 Jun 2019
Print article
Image: The WED dressing generates a weak electrical current when moist (Photo courtesy of Chandan Sen/ OSU).
Image: The WED dressing generates a weak electrical current when moist (Photo courtesy of Chandan Sen/ OSU).
A new study describes how an electric-field-based dressing disrupts mixed-species bacterial biofilm infection and restores functional wound healing.

Developed by researchers at Ohio State University (OSU, Columbus, USA) and Indiana University (Bloomington, IN, USA), the wireless electroceutical dressing (WED) involves patterned deposition of Silver (Ag) and Zinc (Zn) on the dressings fabric. When moistened, the WED generates a weak electric field (without any external power supply), and can be used as any other disposable dressing. The dressing electrochemically self-generates one volt of electricity upon contact with body fluids such as wound fluid or blood, which is not enough to hurt or electrocute the patient.

To test the efficacy of the dressing, the researchers used a porcine chronic wound polymicrobial biofilm infection model, with inoculation with Pseudomonas aeruginosa and Acinetobacter baumannii bacteria. The wounds were treated with a placebo dressing or WED twice a week for 56 days. The results showed that WED prevented and disrupted wound biofilm aggregates and accelerated functional wound closure by restoring skin barrier function. In addition, it battled biofilm-induced inflammation by circumventing nuclear factor kappa B activation and its downstream cytokine responses. The study was published on April 1, 2019, in Annals of Surgery.

“This shows for the first time that bacterial biofilm can be disrupted by using an electroceutical dressing,” said senior author Chandan Sen, PhD, of OSU. “This has implications across surgery as biofilm presence can lead to many complications in successful surgical outcomes. Such textile may be considered for serving as hospital fabric -- a major source of hospital acquired infections.”

Biofilms protect bacterial communities via extracellular polymeric substances (EPS) that form a matrix that serve as a diffusion barrier limiting antibiotic penetration and immobilizing antibiotics. The diffusive barrier also results in nutrient gradients that cause decreased growth and metabolic inactivity in parts of the biofilm community, allowing persister cells to arise, particularly in Gram-negative bacterial biofilms, as their cell membranes are composed of lipopolysaccharides that further limit antibiotic penetration.

Related Links:
Ohio State University
Indiana University

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Non-Contact Infrared Forehead Thermometer
Propper IR Thermometer

Print article

Channels

Surgical Techniques

view channel
Image: The device\'s LEDs light up in several colors, allowing surgeons to see which areas they need to operate on (Photo courtesy of UC San Diego)

Flexible Microdisplay Visualizes Brain Activity in Real-Time To Guide Neurosurgeons

During brain surgery, neurosurgeons need to identify and preserve regions responsible for critical functions while removing harmful tissue. Traditionally, neurosurgeons rely on a team of electrophysiologists,... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.