We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Electric-Field-Based Dressing Disrupts Biofilm Infection

By HospiMedica International staff writers
Posted on 05 Jun 2019
A new study describes how an electric-field-based dressing disrupts mixed-species bacterial biofilm infection and restores functional wound healing.

Developed by researchers at Ohio State University (OSU, Columbus, USA) and Indiana University (Bloomington, IN, USA), the wireless electroceutical dressing (WED) involves patterned deposition of Silver (Ag) and Zinc (Zn) on the dressings fabric. More...
When moistened, the WED generates a weak electric field (without any external power supply), and can be used as any other disposable dressing. The dressing electrochemically self-generates one volt of electricity upon contact with body fluids such as wound fluid or blood, which is not enough to hurt or electrocute the patient.

To test the efficacy of the dressing, the researchers used a porcine chronic wound polymicrobial biofilm infection model, with inoculation with Pseudomonas aeruginosa and Acinetobacter baumannii bacteria. The wounds were treated with a placebo dressing or WED twice a week for 56 days. The results showed that WED prevented and disrupted wound biofilm aggregates and accelerated functional wound closure by restoring skin barrier function. In addition, it battled biofilm-induced inflammation by circumventing nuclear factor kappa B activation and its downstream cytokine responses. The study was published on April 1, 2019, in Annals of Surgery.

“This shows for the first time that bacterial biofilm can be disrupted by using an electroceutical dressing,” said senior author Chandan Sen, PhD, of OSU. “This has implications across surgery as biofilm presence can lead to many complications in successful surgical outcomes. Such textile may be considered for serving as hospital fabric -- a major source of hospital acquired infections.”

Biofilms protect bacterial communities via extracellular polymeric substances (EPS) that form a matrix that serve as a diffusion barrier limiting antibiotic penetration and immobilizing antibiotics. The diffusive barrier also results in nutrient gradients that cause decreased growth and metabolic inactivity in parts of the biofilm community, allowing persister cells to arise, particularly in Gram-negative bacterial biofilms, as their cell membranes are composed of lipopolysaccharides that further limit antibiotic penetration.

Related Links:
Ohio State University
Indiana University


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Absorbable Monofilament Mesh
Phasix Mesh
Semi‑Automatic Defibrillator
Heart Save AED (ED300)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The AI-based approach identifies lipid regions matched well with histopathology results (Photo courtesy of Hyeong Soo Nam/KAIST)

AI-Based OCT Image Analysis Identifies High-Risk Plaques in Coronary Arteries

Lipid-rich plaques inside coronary arteries are strongly associated with heart attacks and other major cardiac events. While optical coherence tomography (OCT) provides detailed images of vessel structure... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.