We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Detecto

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
16 Feb 2023 - 18 Feb 2023

Futuristic Capsule Can be Ingested, Guided and Activated to Detect, Monitor and Treat Chronic GI Problems

By HospiMedica International staff writers
Posted on 08 Dec 2022
Print article
Image: New capsule aims to deliver drugs and hope to GI patients (Photo courtesy of Pexels)
Image: New capsule aims to deliver drugs and hope to GI patients (Photo courtesy of Pexels)

Some 3.1 million people in the U.S. suffer from chronic gastrointestinal (GI) autoimmune disorders like inflammatory bowel disease, Crohn's disease and ulcerative colitis. Medical science has made substantial advances in the last few decades, largely through “systemic” therapies like pills, injections and infusions. Unfortunately, as these therapies diffuse throughout the body, their effectiveness also diminishes. Medicine can’t be targeted to the inflammatory lesions that characterize these gut diseases, and the treatments produce substantial side effects. Capsules can perform GI imaging, gas sensing, lesion biopsy and drug delivery, and they can be commanded remotely through Wi-Fi and a phone app. Still, one problem has persisted: how to keep the capsule in place to deliver medicine amid the constant churning of the digestive system.

Now, researchers at the University of Maryland (College Park, MD, USA) have developed a futuristic new capsule that can be ingested, guided and activated to detect, monitor and treat chronic problems in the GI tract. The researchers have demonstrated a tiny spring actuator that can anchor the capsule, allowing it to deliver a drug deposit to planned locations in the GI tract. With the ability to stay in place for a sustained period of time, the capsule can deliver multiple doses of medication as needed.

The new research introduces the thermomechanical 3D-printable spring actuator, a mechanism that works with existing ingestible capsule-based sensing and communication technologies and enables treatment based on detected GI biomarkers and external commands, which can be delivered via Bluetooth. The actuator is combined with the first application of the Ghodssi’s biomimetic barbed microneedle technology, known as SMAD, for Spiny Microneedle Anchoring drug Deposit. When it’s time to deploy the spring and propel its payload of therapeutic drugs, the capsule’s tiny resistive heating element melts a material called polycaprolactone that holds it in place. The SMAD is then released from the spring to provide prolonged dissolving therapeutic drug delivery to specific lesions.

“Our innovation is an early example of using hybrid fabrication approaches that merge 3D printing with traditional microfabrication to create new and impactful devices,” said first author Joshua Levy, a materials science and engineering doctoral student. “We expect our work will help form the foundation of new forms of treatment, and that these devices eventually will lead to better therapies.”

“We hope that our emerging noninvasive capsule technology will be able to put another tool in the medical kit, one with fewer side effects and better targeted efficacy,” said Professor Reza Ghodssi, whose (ECE/ISR) MEMS Sensors and Actuators Laboratory has been working on capsule development for five years. “Our work addresses only one of the promising research areas for this technology. We believe developing ingestible capsules is a frontier of research that requires an interdisciplinary team of doctors, engineers, biologists and data analysts to solve.”

Related Links:
University of Maryland

Gold Supplier
Ultrasound Transducer/Probe Cleaner
Transeptic Cleaning Solution
New
Endoscopy Display
EndoVue Plus 24”
New
Orthopedic Table
GS GS-HV Series
New
Electric Suction Machine
YX980D

Print article

Channels

AI

view channel
Image: A novel research study moves the needle on predicting coronary artery disease (Photo courtesy of Pexels)

AI-Enabled ECG Analysis Predicts Heart Attack Risk Nearly as well as CT Scans

Increased coronary artery calcium is a marker of coronary artery disease that can lead to a heart attack. Traditionally, CT scans are used to diagnose buildup of coronary artery calcium, although CT scanners... Read more

Surgical Techniques

view channel
Image: The neuro-chip with soft implantable electrodes could manage brain disorders (Photo courtesy of EPFL)

Implantable Neuro-Chip Uses Machine Learning Algorithm to Detect and Treat Neurological Disorders

Using a combination of low-power chip design, machine learning algorithms, and soft implantable electrodes, researchers have produced a neural interface that can identify and suppress symptoms of different... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: Steripath improves the diagnostic accuracy and timeliness of sepsis test results (Photo courtesy of Magnolia)

All-in-One Device Reduces False-Positive Diagnostic Test Results for Bloodstream Infections

Blood cultures are considered the gold standard diagnostic test for the detection of blood stream infections, such as sepsis. However, positive blood culture results can be frequently wrong, and about... Read more

Business

view channel
Image: Researchers expect broader adoption of AI in healthcare in the near future (Photo courtesy of Pexels)

Artificial Intelligence (AI) Could Save U.S. Healthcare Industry USD 360 Billion Annually

The wider adoption of artificial intelligence (AI) in healthcare could save the U.S. up to USD 360 billion annually although its uptake in the industry is presently limited owing to the absence of trust... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.