We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Heart Valve That Grows Along With Child Could Reduce Invasive Surgeries

By HospiMedica International staff writers
Posted on 07 Feb 2023
Print article
Image: Studies have shown the Autus Valve maintains control of blood flow as it expands (Photo courtesy of Boston Children’s Hospital)
Image: Studies have shown the Autus Valve maintains control of blood flow as it expands (Photo courtesy of Boston Children’s Hospital)

In children with congenital pulmonary valve disease, the flow of blood between the heart and lungs is impeded. In cases where the pulmonary valves have narrowed or are leaking and cannot be treated effectively with a catheter, surgeons generally replace them with a prosthetic valve. However, the current prosthetic pulmonary valves are adult-sized and have a fixed diameter, as a result of which they must be replaced as the child grows up. Now, for the first time, a prosthetic pulmonary valve replacement specifically designed for pediatric patients can expand over time inside a child’s anatomy. The valve can be fitted to the child’s individual body size and also adjusted for size if required through a minimally-invasive transcatheter balloon dilation procedure to maintain blood flow. This could eliminate the need to perform invasive replacement surgeries every few years as the child will not require another replacement procedure until reaching adulthood.

The revolutionary device, known as the Autus Valve, was invented at Boston Children’s Hospital (Boston, MA, USA) and was first implanted in a young patient in late 2021 as part of a collaborative clinical study. In commercially available prosthetic heart valves, there are three leaflets that operate as flaps for controlling blood flow, thereby imitating the tri-leaflet structure of the human aortic valve. For developing the heart valve, the researchers drew inspiration from a device that mimicked the bi-leaflet function of a venous valve in leg veins, as its two elastic flaps possess the perfect geometry for maintaining proper closure and one-way blood flow even after the veins in the leg expand in diameter. The team believed that this process could also work in the heart and went on to study the geometric profile of the human venous valve while using this as the basis for creating a valve prototype.

The researchers conducted studies in which they implanted prototypes of the replacement pulmonary valve in growing lambs and found that the device can be fitted and then expanded in sync along with the growth of heart anatomy. They also found that the valve could successfully maintain the control of blood flow without stretching and compromising the device’s frame or material. The two leaflets in the device are made of a polymer which has a long track record of use as a pediatric pulmonary valve leaflet. Before being implanted, doctors can adjust the valve diameter to match a patient’s heart anatomy. After the device is implanted, cardiac catheterization specialists can expand the valve if it becomes too small after a child’s grows quickly by using a catheter balloon. Using an echocardiogram, doctors can assess the valve’s integrity and how well it is controlling the flow of blood. Boston Children’s is now conducting US FDA-approved early clinical studies to examine the valve’s effectiveness in children aged between 2 to 11 years. The initial study will be followed by a larger clinical trial, with the aim of seeking FDA approval for making the device commercially available.

“It’s exciting and incredibly motivating that we’re at the stage where we can actually see the device helping patients,” said the device’s inventor, Sophie-Charlotte Hofferberth, MD. “If a valve expansion is needed after the device is implanted, we anticipate a child would recover from the procedure within a few hours,”

“There is a huge need for better solutions for children with valve disease,” Hofferberth added. “A pulmonary valve that can be adjusted for size could give young patients a bridge through childhood and have a huge impact on their long-term quality of life.”

Related Links:
Boston Children’s Hospital 

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Electrical Suction Machine
TR-23CII
New
Mobile Full-Body CT System
TRON
New
Barrier Mount
RayShield SideWinder

Print article
Radcal

Channels

AI

view channel
Image: Machine learning program can accurately predict a patient’s risk of death within a month, a year and five years (Photo courtesy of Pexels)

Machine Learning Programs Predict Mortality Risk by Analyzing Results from Routine Hospital Tests

Individuals having high blood pressure or symptoms of heart disease, such as chest pain, shortness of breath or an irregular heartbeat generally visit a hospital or an emergency department.... Read more

Surgical Techniques

view channel
Image: Lighting up tumors could help surgeons remove them more precisely (Photo courtesy of Pexels)

‘Molecular Imaging’ Lights up Tumors for Surgeons to Enable Precise Removal

Neuroblastoma is a devastating form of childhood cancer that accounts for 8-10% of all childhood cancers and roughly 15% of all childhood deaths from cancer. Sadly, in almost one-third of cases, the cancer... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: The Profile System is a portable and fully automated immunodiagnostic device (Photo courtesy of Proxim Diagnostics)

Handheld Immunoanalyzer Performs Laboratory Tests near Patient without Sacrificing Sensitivity and Precision

Near Patient Testing (NPT), also known as Point of Care Testing (POCT), is a rapidly growing area within the field of In vitro diagnostics (IVDs). NPT is now recognized for its key role in making services... Read more

Business

view channel
Image: The demand for endometrial ablation devices is increasing due to rising prevalence of gynecological disorders (Photo courtesy of Pexels)

Global Endometrial Ablation Market Driven by Rising Prevalence of Gynecological Disorders

Gynecological disorders, such as menorrhagia, PCOD, abnormal vaginal bleeding, affect millions of women globally every year and are on the rise. Abnormal Uterine Bleeding (AUB) is the most common disorder... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.