We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Ground-Breaking Method Combines fMRI with ML to Predict Mortality Risk in Severely Brain-Injured ICU Patients

By HospiMedica International staff writers
Posted on 15 Sep 2023
Print article
Image: The new technique can predict which patients will recover from a serious brain injury with 80% accuracy (Photo courtesy of Freepik)
Image: The new technique can predict which patients will recover from a serious brain injury with 80% accuracy (Photo courtesy of Freepik)

Severe brain injuries, whether stemming from a stroke, cardiac arrest, or a traumatic event, can have life-altering consequences for patients and their families. In the case of patients admitted to the intensive care unit (ICU) for brain injury, uncertainty looms large for their families and healthcare providers regarding the chances of recovery, be it partial or complete. Now, researchers have developed a ground-breaking method for predicting which ICU patients can survive a severe brain injury.

Researchers at Western University (Ontario, Canada) combined functional magnetic resonance imaging (fMRI) with advanced machine learning algorithms to address one of the most pressing challenges in critical care: predicting recovery outcomes following significant brain injuries. Working alongside neurologists, the researchers monitored brain activity in 25 ICU patients during the initial days after their brain injuries. They aimed to find out if these readings could indicate which patients would ultimately survive. Earlier work by the team had shown that potential recovery signs could be captured by how different regions of the brain interacted with each other. Maintaining these inter-regional connections is crucial for the restoration of consciousness.

The researchers achieved the breakthrough when they figured out they could combine the fMRI data with machine learning technology. This innovative integration allowed them to predict with 80% accuracy which patients were likely to recover, a rate that surpasses the current standard of care. Despite this promising development, the team emphasizes that their predictive method isn't flawless and warrants additional investigation and validation.

“Modern artificial intelligence has shown incredible predictive capabilities. Combining this with our existing imaging techniques was enough to better predict who will recover from their injuries,” said Matthew Kolisnyk, a graduate student from Western University.

Related Links:
Western University 

Platinum Supplier
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Supplier
Temperature Monitor
ThermoScan Temperature Monitoring Unit
New
Patient Monitor
CMS9100
New
Wireless Flat Panel Detector
750Mc

Print article
Radcal

Channels

Critical Care

view channel
Image: Flexible thin-film electrodes placed directly on brain tissue have shown promise for diagnosis and treatment of epilepsy (Photo courtesy of Tokyo Tech)

Thin-Film Neural Electrodes Placed Directly on Brain Tissue Can Diagnose and Treat Epilepsy

Analyzing brain activity is crucial for diagnosing conditions like epilepsy and other mental health disorders. Among various methods, electroencephalography (EEG) is considered the least intrusive, using... Read more

Surgical Techniques

view channel
Image: The ARC-IM Stimulator with brain-computer interface restores arm, hand, and finger function after spinal cord injury (Photo courtesy of ONWARD Medical)

First-in-Human Implant of Thought-Driven Movement Device to Treat Spinal Cord Injury

In order to walk, signals from the brain are sent to neurons in the lumbosacral part of the spinal cord. When a spinal cord injury occurs, it cuts off this essential communication between the brain and... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The broad-spectrum POC coagulometer is well-suited for emergency room and emergency vehicle use (Photo courtesy of Perosphere)

Novel POC Coagulometer with Lab-Like Precision to Revolutionize Coagulation Testing

In emergency settings, when patients arrive with a bleed or require urgent surgery, doctors rely solely on clinical judgment to determine if a patient is adequately anticoagulated for reversal treatment.... Read more

Business

view channel
Image: The global surgical lights market is expected to grow by close to USD 0.50 billion from 2022 to 2027 (Photo courtesy of Freepik)

Global Surgical Lights Market Driven by Increasing Number of Procedures

The global surgical lights market is set to witness high growth, largely due to the increasing incidence of chronic illnesses, a surge in demand for cosmetic and plastic surgeries, and untapped opportunities... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.