We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App


31 Jul 2024 - 02 Aug 2024
02 Aug 2024 - 04 Aug 2024
20 Aug 2024 - 22 Aug 2024

AI from Patient ECGs Can Detect Cardiovascular Disease Risks Sooner, Suggests Study

By HospiMedica International staff writers
Posted on 26 Oct 2023
Print article
Image: A new study suggests ECG-AI can detect cardiovascular disease risks sooner (Photo courtesy of 123RF)
Image: A new study suggests ECG-AI can detect cardiovascular disease risks sooner (Photo courtesy of 123RF)

Atherosclerotic cardiovascular disease, characterized by arteries that are narrowed or clogged due to fatty deposits, is the number one cause of death worldwide. Often, the condition is driven by coronary artery disease, which many people may have without even knowing it. Tools available to clinicians like the pooled cohort equation are used to evaluate a patient's 10-year risk of heart attacks and strokes, although these methods are not without flaws. Electrocardiograms (ECGs), which record the electrical activity of the heart, are commonly used tests. Artificial intelligence (AI) has the ability to recognize and analyze hidden disease patterns in these electrical signals. Now, a new study suggests that AI applied to patient ECGs could offer a more efficient way to assess the risk of heart disease.

According to the research, AI algorithms trained on ECG data can detect potential risks much earlier than existing risk-calculation methods. They can identify symptoms of coronary artery disease like arterial calcification and obstructions, as well as signs of previous heart attacks. The ECG-based AI for evaluating coronary artery disease risk was jointly created by at Mayo Clinic (Rochester, MN, USA) and Anumana, Inc. (Cambridge, MA, USA) using a retrospective analysis of electronic medical records from over seven million U.S. patients to train three distinct AI models. These models were designed to spot coronary artery calcium, arterial blockages, and poor movement in segments of the heart's left ventricle, which is an indicator of a past heart attack.

"Used together, the three independent ECG-AI models predicted which patients had a high risk of hidden coronary artery disease, and therefore a high risk of having a heart attack. This is important information to guide our conversations with patients at the point of care, especially since the AI was useful in calculating these risks for as short as three years," said Francisco Lopez-Jimenez, M.D., a cardiologist at Mayo Clinic. "Used alone, the pooled cohort equation estimates the 10-year risk of developing cardiovascular disease. The addition of ECG-AI to see hidden risks sooner has the potential to save more lives. This model may also help identify people who do not know they have coronary disease who may benefit from lifesaving therapies."

Related Links:
Mayo Clinic 
Anumana, Inc. 

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Compact 14-Day Uninterrupted Holter ECG
Rectangular Top Imaging-Pain Management Table

Print article


Surgical Techniques

view channel
Image: Electronic prompt for surgeons may reduce breast cancer overtreatment (Photo courtesy of 123RF)

EHR–Based Nudge Intervention for Surgeons to Reduce Breast Cancer Overtreatment

Sentinel lymph node biopsy (SLNB) is a critical surgical technique used to assess if breast cancer has spread to the underarm lymph nodes, although it's not necessary for all patients. Undergoing SLNB... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: POCT offers cost-effective, accessible, and immediate diagnostic solutions (Photo courtesy of Flinders University)

POCT for Infectious Diseases Delivers Laboratory Equivalent Pathology Results

On-site pathology tests for infectious diseases in rural and remote locations can achieve the same level of reliability and accuracy as those conducted in hospital laboratories, a recent study suggests.... Read more


view channel
Image: The Innovalve transseptal delivery system is designed to enable safe deployment of the Innovalve implant (Photo courtesy of Innovalve Bio)

Edwards Lifesciences Acquires Sheba Medical’s Innovalve Bio Medical

Edwards Lifesciences (Irvine, CA, USA), a leading company in medical innovations for structural heart disease and critical care, has acquired Innovalve Bio Medical LTD. (Ramat Gan, Israel), an early-stage... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.