We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics .

Download Mobile App




Advanced Anesthesia Technology to Precisely Control Unconsciousness Could Reduce Postoperative Side Effects

By HospiMedica International staff writers
Posted on 01 Nov 2023
Print article
Image: The new anesthesia technology precisely controlled unconsciousness in animal tests (Photo courtesy of 123RF)
Image: The new anesthesia technology precisely controlled unconsciousness in animal tests (Photo courtesy of 123RF)

Anesthesiologists could achieve better results with less medication if they had a precise method for managing dosages. This would enable them to maintain the perfect level of unconsciousness while minimizing post-surgery cognitive issues, particularly in vulnerable populations like older adults. However, given their multitude of tasks, such as keeping patients both stable and deeply unconscious, anesthesiologists can't accomplish this without technological help. To tackle this challenge, scientists have created a closed-loop system that uses brain state monitoring to automatically adjust the doses of the anesthesia drug propofol at 20-second intervals.

The advanced closed-loop anesthesia delivery (CLAD) system developed by researchers at MIT (Cambridge, MA, USA) and Massachusetts General Hospital (Boston, MA, USA) tailors propofol dosages by monitoring the brain state of the individual, with the objective of achieving the specific level of unconsciousness required while reducing postoperative side effects. The CLAD system employs real-time feedback from brain state metrics to continuously adjust the administered dose.

The uniqueness of the CLAD system lies in its use of direct, physiologically based brain state indicators to measure unconsciousness. In the operating room, anesthesiologists usually depend on indirect signs like heart rate, blood pressure, and physical immobility. Instead, this research team established a brain-based indicator by recording shifts in neural spiking activity during unconscious states, along with the larger scale rhythms they generate, known as Local Field Potentials (LFPs). By correlating LFP power with these spiking-based measures in animal subjects, they identified that the total LFP power between 20 and 30 Hz serves as a reliable unconsciousness marker.

Additionally, the researchers integrated a physiologically principled model into the system that determines the pharmacokinetics (PK) and pharmacodynamics (PD) of propofol into their system. The model helps to determine both the speed and dosage of the drug needed to change the state of consciousness. The system adjusts the infusion rate every 20 seconds based on the difference between the measured LFP power and the targeted level set by the anesthesiologist, using this PK/PD model to close the gap. Initially, the team conducted computer simulations of the CLAD system under real-world conditions. Then, they carried out nine experiments, each lasting 125 minutes, with two animal subjects. In each case, the system had to maintain the animals at a specific unconsciousness level for various durations. It successfully kept the unconsciousness marker extremely close to the targeted levels during the entire experiment.

However, the researchers admit that more work is required to make the system suitable for human application. One necessary step is shifting the system's foundation to EEGs, which can be measured non-invasively from the scalp. Alongside this, a reliable marker for unconsciousness based on human EEGs must be identified. Additionally, they aim to enhance the system to not only sustain unconsciousness but also to help initiate it and aid in bringing the patient back to consciousness.

“One of the ways to improve anesthesia care is to give just the right amount of drug that’s needed,” said Emery N. Brown, Edward Hood Taplin Professor of Medical Engineering and Computational Neuroscience at MIT and an anesthesiologist at MGH. “This opens up the opportunity to do that in a really controlled way.”

Related Links:
MIT 
Massachusetts General Hospital 

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Specimen Collection & Transport
New
Isolation Stretcher
IS 736
Gold Supplier
12-Channel ECG
CM1200B

Print article
Detecto

Channels

Critical Care

view channel
Image: The BASHIR Endovascular Catheter was recently approved by the U.S. FDA (Photo courtesy of THROMBOLEX)

Novel Endovascular Catheter Opens Blocked Arteries Deep Within Lungs

The occlusion of small lung arteries is the main cause of the reduction in blood flow in patients with acute pulmonary embolism. The more occlusions that a patient has, the lower the chances of survival.... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.