We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Low-Dose Radiation Therapy Demonstrates Potential for Treatment of Heart Failure

By HospiMedica International staff writers
Posted on 07 Dec 2023
Print article
Image: Radiotherapy may improve heart function by reducing inflammatory immune cells (Photo courtesy of 123RF)
Image: Radiotherapy may improve heart function by reducing inflammatory immune cells (Photo courtesy of 123RF)

Millions of people are living with heart failure, a condition where the heart progressively loses its capacity to effectively circulate oxygenated blood throughout the body. Heart failure can arise from various causes, such as previous heart attacks, viral infections, or chronic arrhythmias like ventricular tachycardia, which is a dangerous abnormal heart rhythm. In a novel approach, a team comprising cardiologists and radiation oncologists has explored the use of radiation therapy, typically a cancer treatment, to manage ventricular tachycardia in heart failure patients. Initial studies on a small patient group and experimental models in mice suggest that low-dose radiation therapy could potentially enhance heart function in different heart failure forms. While further research is necessary to assess its application in heart failure patients, these findings imply that radiation may have broader and possibly advantageous impacts on hearts with significant inflammation than previously thought.

Researchers from Washington University in St. Louis (WUSTL, St. Louis, MO, USA) studied nine patients with ventricular tachycardia, conducting cardiac MRI scans before and after administering radiation treatment. The post-radiation MRIs revealed notable improvements in heart function, particularly the left ventricle's enhanced pumping ability, which circulates blood throughout the body. This improvement was observed mere days after treatment, indicating it was not solely due to arrhythmia reduction, which typically occurs over weeks and months. The team also examined low-dose radiation's effects on mice models with heart failure from three different causes. The results mirrored those seen in human patients: mice that received radiation therapy displayed better heart function, especially in the left ventricle. Notably, in mice with progressive heart failure, radiation treatment extended their survival, suggesting a direct correlation between improved heart function and increased survival.

In the mice with heart failure treated with radiation, there was a noticeable reduction in fibrosis or scar tissue, and a decrease in cardiac macrophages, an immune cell type known for driving heart inflammation. Generally, irradiated hearts showed fewer rapidly proliferating cells, such as immune cells and fibroblasts, which are known to exacerbate heart failure. Conversely, typical heart muscle cells rarely, if ever, divide. The research team plans to extend their investigation to patients already undergoing radiation therapy for ventricular tachycardia, aiming to delve deeper into radiation's impact on the heart. The current study, demonstrated through MRI, indicated improved heart function. The team now intends to conduct more comprehensive studies to ascertain if there is a corresponding decrease in inflammation in human hearts, akin to the findings in the mouse models.

“The radiation therapy used to treat ventricular tachycardia is targeted to a specific location in the heart; however, a large portion of the rest of the heart gets a low-dose exposure,” said co-senior author and cardiologist Ali Javaheri, MD, PhD, an assistant professor of medicine. “We wanted to understand the effects of that low-dose radiation on these patients’ hearts. There was concern that it could be harmful to overall heart function, even though it treats dangerous arrhythmia. We were surprised to find the opposite: Heart function appeared to be improved after radiation therapy, at least in the short term.”

Related Links:
WUSTL

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Illuminated Retractor System
HandLite

Print article

Channels

Critical Care

view channel
Image: A machine learning tool can identify patients with rare, undiagnosed diseases years earlier (Photo courtesy of 123RF)

Machine Learning Tool Identifies Rare, Undiagnosed Immune Disorders from Patient EHRs

Patients suffering from rare diseases often endure extensive delays in receiving accurate diagnoses and treatments, which can lead to unnecessary tests, worsening health, psychological strain, and significant... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.