We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




New Aneurysm Prediction System Demonstrates 98% Accuracy

By HospiMedica International staff writers
Posted on 21 Dec 2023
Print article
Image: A 4D flow MRI scan of a human aorta (Photo courtesy of Ethan Johnson)
Image: A 4D flow MRI scan of a human aorta (Photo courtesy of Ethan Johnson)

An aortic aneurysm is a condition where the aorta, the body's largest artery, swells to more than 1.5 times its normal size, leading to a weakened arterial wall. Over time, this weakening can progress to the point where the aorta can't handle the pressure from blood flow, potentially causing a rupture. While this occurrence is relatively rare, it's typically unforeseen and is almost invariably lethal. Despite the seriousness of aortic aneurysms, the precise mechanics behind their development have remained a mystery, leaving the medical field without a standardized method for predicting them. Researchers have now introduced the first physics-based metric to predict the possibility of an individual experiencing a fatal aortic aneurysm, which often exhibits no warning signs until it's too late.

Traditionally, medical professionals gauge the risk of rupture by considering various factors such as the patient's age, lifestyle, and the aorta's size. They monitor the aorta's growth through periodic imaging tests. When the aorta enlarges rapidly or excessively, the patient might undergo surgery to reinforce the weakened wall, a procedure not without its own set of risks. Researchers at Northwestern University (Evanston, IL, USA) set out to eliminate the guesswork from predicting future aneurysms by focusing on the fundamental physics underlying the problem. In their study, they identified abnormal aortic growth by detecting subtle oscillations in the blood vessel's wall. These oscillations or "flutterings" occur as blood flows through the aorta, causing it to ripple similarly to a flag in the wind. Whereas a stable flow signifies healthy, regular growth, an unstable flutter strongly indicates potential abnormal growth and risk of rupture.

This groundbreaking approach led to the development of the "flutter instability parameter" (FIP), a metric that has shown a 98% accuracy rate in predicting future aneurysms, typically three years post-initial measurement. For a personalized FIP assessment, patients require just one 4D flow magnetic resonance imaging (MRI) scan. This predictive metric could enable doctors to proactively manage high-risk patients with medications or other interventions, potentially preventing the aorta from reaching a critical size. The research team is now investigating whether the FIP can throw light on the development of other cardiovascular conditions and determining which prevention strategies might be most effective based on patient-specific FIPs to halt aneurysm progression.

“Aortic aneurysms are colloquially referred to as ‘silent killers’ because they often go undetected until catastrophic dissection or rupture occurs,” said Northwestern’s Neelesh A. Patankar, senior author of the study. “The fundamental physics driving aneurysms has been unknown. As a result, there is no clinically approved protocol to predict them. Now, we have demonstrated the efficacy of a physics-based metric that helps predict future growth. This could be transformational in predicting cardiac pathologies.”

Related Links:
Northwestern University

Gold Member
12-Channel ECG
CM1200B
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Electric Bariatric Patient Lifter
SVBL 205

Print article

Channels

Critical Care

view channel
Image: A demonstration of the on-skin wearable bioelectronic device (Photo courtesy of University of Missouri)

On-Skin Wearable Bioelectronic Device Paves Way for Intelligent Implants

A team of researchers at the University of Missouri (Columbia, MO, USA) has achieved a milestone in developing a state-of-the-art on-skin wearable bioelectronic device. This development comes from a lab... Read more

Surgical Techniques

view channel
Image: The hyperspectral imaging system extracts molecular vibrations of different resins and distinguishes between them with high reproducibility (Photo courtesy of Hiroshi Takemura from Tokyo University of Science)

Novel Rigid Endoscope System Enables Deep Tissue Imaging During Surgery

Hyperspectral imaging (HSI) is an advanced technique that captures and processes information across a given electromagnetic spectrum. Near-infrared hyperspectral imaging (NIR-HSI) has particularly gained... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.