We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Wearable Sensor Could Reduce Catheter-Related Bloodstream Infections

By HospiMedica International staff writers
Posted on 27 Dec 2023
Print article
Image: Catheter-related bloodstream infection can be life-threatening, extend hospital stay and increase costs (Photo courtesy of Texas A&M Engineering)
Image: Catheter-related bloodstream infection can be life-threatening, extend hospital stay and increase costs (Photo courtesy of Texas A&M Engineering)

Hospitalized patients already face numerous challenges, and the risk of acquiring a catheter-related bloodstream infection only adds to their burden. These infections, often life-threatening, can prolong hospital stays and escalate treatment costs. They commonly occur when a central venous catheter, or a central line, is placed in a large vein leading directly to the heart. These catheters are crucial for critically ill patients, enabling rapid medication administration or heart function monitoring.

In response to this critical issue, researchers at Texas A&M University (College Station, TX, USA) are pioneering a catheter dressing designed to reduce the frequency and severity of catheter-related bloodstream infections. This innovative dressing, integrated with the catheter, will incorporate wireless sensors capable of detecting extremely low levels of bacterial growth on the skin. Currently, no catheters in the market can automatically and swiftly detect bacterial growth at the catheter-insertion site. Previous attempts by other researchers to detect bacteria indirectly, such as through variations in skin pH, haven't addressed the need for direct bacteria detection.

Often, initial signs of infection might be overlooked because the dressing conceals symptoms like swelling or drainage. Any delay in detecting an infection provides time for it to escalate. Once an infection is suspected, healthcare providers must await blood test results to confirm its presence and might resort to broad-spectrum antibiotics while waiting, which can lead to antibiotic resistance.

The successful development of this dressing with embedded wearable sensors signifies a potential paradigm shift. It can alert healthcare providers to bacterial growth without the need to remove the dressing, leading to prompt and more accurate detection. This advancement could pave the way for immediate and targeted antibiotic treatments, reducing the prevalence of antibiotic resistance. Nonetheless, the research team faces several hurdles, including the challenge of detecting exceedingly low bacterial levels, ensuring the dressing's flexibility, incorporating a durable adhesive, and selecting materials that minimize allergic reactions in patients.

Related Links:
Texas A&M University

Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Video Laryngoscope
SH-VL1

Print article

Channels

Surgical Techniques

view channel
Image: The hyperspectral imaging system extracts molecular vibrations of different resins and distinguishes between them with high reproducibility (Photo courtesy of Hiroshi Takemura from Tokyo University of Science)

Novel Rigid Endoscope System Enables Deep Tissue Imaging During Surgery

Hyperspectral imaging (HSI) is an advanced technique that captures and processes information across a given electromagnetic spectrum. Near-infrared hyperspectral imaging (NIR-HSI) has particularly gained... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.