We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




New Implant Powers Healing After Spinal Cord Injury

By HospiMedica International staff writers
Posted on 30 Aug 2024

Spinal cord injuries are severe and often lead to paralysis. These injuries sever the long axonal projections of neurons, which then degenerate away from the injury site. Concurrently, a lesion forms that blocks any potential regrowth of these nerve fibers, which is crucial for functional recovery. Overcoming this challenge of neuron regrowth has been a significant barrier to developing effective treatments for these life-altering injuries. Now, a breakthrough involving an electrically active implant might offer a new way to promote neuron repair after such injuries.

A research team at RCSI University of Medicine and Health Sciences (Dublin, Ireland;) has developed a 3D-printed, electroconductive scaffold that can be implanted directly at the spinal cord injury site, effectively bridging the gap created by the lesion. This scaffold, designed to replicate the spinal cord's structure, coupled with electrical stimulation, may encourage damaged neurons to regenerate their axons and reconnect, thus potentially restoring function. The application of electrical signals through the implant is intended to enhance the regrowth of these severed axons. Moreover, the implant's design includes scaffolding and channels that guide the axons, helping them regrow in the proper formation.

This innovation and its laboratory performance are detailed in the journal Materials Today. Laboratory tests showed encouraging outcomes: neurons cultured on the scaffold and subjected to a week of electrical stimulation extended long, healthy neurites. Such growth, if replicated in the human body, could be critical for repair and recovery following spinal cord injuries. The findings suggest that electrostimulation delivered through a 3D-printed, anatomically accurate, electroconductive scaffold could be a viable strategy for treating spinal cord injuries, representing a significant advancement in the field.

Related Links:
RCSI University of Medicine and Health Sciences

Gold Member
12-Channel ECG
CM1200B
Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
New
Electrocardiograph
BeneHeart R700/R900
New
4K-3D NIR/ICG Video Endoscope
TIPCAM 1 Rubina
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Critical Care

view channel
Image: The novel approach utilizes continuous glucose monitoring to detect early signs of impaired glucose regulation (Photo courtesy of Shinya Kuroda/University of Tokyo)

Wearable Glucose Monitor Offers Less Invasive Approach to Assessing Diabetes Risk

Diabetes, often referred to as a "silent epidemic," is a growing global health issue with significant impacts on both health and the economy. Detecting impaired glucose regulation early — an intermediate... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.