We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
16 Feb 2023 - 18 Feb 2023

Electrospinning Technology Treats Burns from Afar

By HospiMedica International staff writers
Posted on 18 Feb 2019
Print article
Image: The SpinCare device and SpinKit solution create a personalized transient skin layer (Photo courtesy of Nanomedic Technologies).
Image: The SpinCare device and SpinKit solution create a personalized transient skin layer (Photo courtesy of Nanomedic Technologies).
A breakthrough medical device that looks like an oversized glue gun creates a transient layer that protects burn victims’ wounds without ever touching their sensitive skin.

The Nanomedic Technologies (Lod, Israel) SpinCare device is a portable wound care system that creates an on-the-spot protective nano-fibrous layer that facilitates tissue repair and healing of second-degree burns, surgical wounds, large lacerations and partial deep wounds, all without any contact from the caregiver. The protective layer is applied about 20 cm away from the wound, and is applied only once. It then remains on the wound throughout the healing process, allowing growth of new skin underneath it.

The electrospun nanofibers, which can be made from most natural or synthetic polymers, create a nanofibrous mat, which mimics the natural extra cellular matrix (ECM), encouraging quick and efficient tissue integration and minimizing medical complications. The technology can address various stages of the healing process by allowing the combination of additives such as antibacterial, antibiotics, collagen, cannabinoids, silicon, and hydrogels into the electrospun nanofibers, providing an excellent scaffold for growth and an active or passive protective layer.

“There is also a reduced risk for infection because the wound is never touched, and you don’t need to replace it. Typically, the major pain that patients complain about is the traumatic changing of dressings. Here you skip this step, and this is crucial for the patient and for the caregiver,” said Chen Barak, MD, CEO of Nanomedic Technologies. “After our application, you can go back to regular day-to-day life, including early showers and free movement.”

Electrospinning technology allows tight control of matrix characteristics, including shape (flat, tubular, or contoured); size (length, width, and thickness); fiber diameter; pore size; and porosity (0%-95%). Both natural materials such as collagen, chitosan, or DNA can be used, as well as stable or biodegradable polymers, such as polylactic-co-glycolic acid (PLGA), poly-L-Lysine (PLL), polyvinyl alcohol (PVA), and other. Many additives can be incorporated as well, such as drugs and nanoparticles, either inside, on the surface, or between the fibers. The final product can be formed as a single or multilayer mesh, a film, gels, or coatings, and either transparent or opaque.

Related Links:
Nanomedic Technologies

Platinum Supplier
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Elevating X-Ray Table
Memory Foam Mattress
Portable Medical Air Compressor

Print article



view channel
Image: A novel research study moves the needle on predicting coronary artery disease (Photo courtesy of Pexels)

AI-Enabled ECG Analysis Predicts Heart Attack Risk Nearly as well as CT Scans

Increased coronary artery calcium is a marker of coronary artery disease that can lead to a heart attack. Traditionally, CT scans are used to diagnose buildup of coronary artery calcium, although CT scanners... Read more

Surgical Techniques

view channel
Image: The neuro-chip with soft implantable electrodes could manage brain disorders (Photo courtesy of EPFL)

Implantable Neuro-Chip Uses Machine Learning Algorithm to Detect and Treat Neurological Disorders

Using a combination of low-power chip design, machine learning algorithms, and soft implantable electrodes, researchers have produced a neural interface that can identify and suppress symptoms of different... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: Steripath improves the diagnostic accuracy and timeliness of sepsis test results (Photo courtesy of Magnolia)

All-in-One Device Reduces False-Positive Diagnostic Test Results for Bloodstream Infections

Blood cultures are considered the gold standard diagnostic test for the detection of blood stream infections, such as sepsis. However, positive blood culture results can be frequently wrong, and about... Read more


view channel
Image: The global patient positioning systems market is projected to reach USD 1.7 billion by 2027 (Photo courtesy of Pexels)

Global Patient Positioning Systems Market Driven by Increasing Chronic Diseases

The global patient positioning systems market is projected to grow at a CAGR of 4% from USD 1.4 billion in 2022 to USD 1.7 billion by 2027, driven by increasing technological advancements in medical devices,... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.