Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Mind-Controlled Robotic Arm Benefits Paralyzed Patients

By HospiMedica International staff writers
Posted on 03 Jul 2019
A noninvasive brain-computer interface (BCI) allows a mind-controlled robotic arm to continuously track and follow a computer cursor, using only thoughts.

Developed by researchers at Carnegie Mellon University (CMU; Pittsburgh, PA, USA) and the University of Minnesota (UMN; Minneapolis, USA), the new BCI facilitates real-time continuous robotic device control by increasing user engagement and spatial resolution of noninvasive neural data through electroencephalogram (EEG) source imaging, accompanied by a continuous pursuit task and an associated training paradigm. More...
In all, the framework enhanced BCI learning by nearly 60% for traditional center-out tasks, and by more than 500% in the more realistic continuous pursuit task.

The researchers further demonstrated an additional enhancement in BCI control of almost 10% by using online noninvasive neuroimaging. The framework was also deployed in a physical task, demonstrating a near-seamless transition from the control of an unconstrained virtual cursor to the real-time control of a robotic arm. The researchers claim that combining advances in the quality of neural decoding with the accessibility of noninvasive robotic arm control will have a major role in the future development and implementation of neurorobotics. The study was published on June 19, 2019, in Science Robotics.

“There have been major advances in mind controlled robotic devices using brain implants. It's excellent science, but noninvasive is the ultimate goal,” said senior author Professor Bin He, PhD, head of the department of biomedical engineering at CMU. “This work represents an important step in noninvasive brain-computer interfaces, a technology which someday may become a pervasive assistive technology aiding everyone, like smartphones.”

Direct electrical stimulation and recording of brain activity requires invasive procedures, such as the removal of a portion of the skull or the drilling of a burr hole. Also, electrode implantation into tissue can cause inflammatory tissue responses and brain trauma, and lead to device failure. A noninvasive counterpart requiring less intervention could profoundly improve the integration of BCIs into the clinical and home setting.

Related Links:
Carnegie Mellon University
University of Minnesota


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Endoscopy Display
E190
Open Stapler
PROXIMATE Linear Cutter
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.