We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GC Medical Science corp.

Download Mobile App




Ozone Therapy Patch Treats Antibiotic-Resistant Infections

By HospiMedica International staff writers
Posted on 16 Sep 2020
A wearable, portable topical ozone therapy system could provide a promising alternative approach for treatment of non-healing and infected wounds.

Developed at Purdue University (Lafayette, IN, USA), the system is comprised of a flexible and disposable semipermeable dressing connected to a portable and reusable ozone-generating unit via a flexible tube. The dressing itself consists of a multilayered structure with gradient porosities to achieve uniform ozone distribution, and with hydrophobic properties that allow contact with biofluids on the wound surface, without blocking the exposed pores. The combination of features permits a uniform permeation of ozone through the dressing, without significant resistance.

The antimicrobial effects of the system were tested against common antibiotic resistant strains of bacteria, including Pseudomonas aeruginosa and Staphylococcus epidermidis. The results indicated complete elimination of P. aeruginosa and a significant reduction in the number of S. epidermidis colonies after six hours of exposure. The tests also showed low cytotoxicity against human fibroblast cells during the same duration ozone treatment. The study was published in the August 2020 issue of Frontiers in Bioengineering and Biotechnology.

“We created a revolutionary type of treatment to kill the bacteria on the surface of the wound or diabetic ulcer and accelerate the healing process,” said senior author Rahim Rahimi, PhD, of the Purdue School of Materials Engineering. “Our breathable patch is applied to the wound and then connected to a small, battery powered ozone-generating device. The ozone gas is transported to the skin surface at the wound site and provides a targeted approach for wound healing. Our innovation is small and simple to use for patients at home.”

Ozone is known to inactivate bacteria, viruses, fungi, yeast, and protozoa through the oxidation of phospholipids and lipoproteins in the cell envelope, which leads to weakened or destroyed bacterial walls.

Related Links:
Purdue University



Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
New
4K-3D NIR/ICG Video Endoscope
TIPCAM 1 Rubina
New
Vital Signs Monitor
iM3s
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The Elana Heart Bypass System is designed to make suturing obsolete (Photo courtesy of AMT Medical)

Pioneering Sutureless Coronary Bypass Technology to Eliminate Open-Chest Procedures

In patients with coronary artery disease, certain blood vessels may be narrowed or blocked, requiring a stent or a bypass (also known as diversion) to restore blood flow to the heart. Bypass surgeries... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.