We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
16 Feb 2023 - 18 Feb 2023

Stroke Patients Recover Arm Use with Virtual Reality

By HospiMedica International staff writers
Posted on 29 Jun 2015
Print article
Image: The Rehabilitation Gaming System (RGS) (Photo courtesy of Universitat Pompeu Fabra).
Image: The Rehabilitation Gaming System (RGS) (Photo courtesy of Universitat Pompeu Fabra).
A new study suggests that using virtual reality could assist arm rehabilitation in stroke patients and increase their confidence in using their paralyzed arm.

Researchers at Universitat Pompeu Fabra (UFP; Barcelona, Spain), Hospital Universitari Vall d'Hebron (Barcelona, Spain), and other institutions conducted a small pilot study in 20 hemiparetic stroke patients that played a Rehabilitation Gaming System (RGS) using a Microsoft Kinect sensor and optional gloves to track their movement. The system allowed the users to control a virtual body via their own movements on a computer screen, as seen from a first-person perspective.

The participants were asked to perform various tasks in a virtual world. In some of these tasks, the researchers enhanced the paretic limb’s virtual movements, making it appear faster, more accurate, and easier to reach the target on screen. These amplifications were introduced and suppressed in a gradual fashion to keep participants unaware of the manipulations. Following these manipulations, the participants’ performance in the unamplified task was recorded, including the likelihood of them using their paretic limb.

The researchers found that that there was a significantly higher probability that the patient would select their paretic limb for reaching towards a virtual target after the intervention, even when there was no amplification of movement in the session, and with the patient unaware of the previous session’s manipulation. After experiencing the amplification of the paretic limb in virtual reality, the patients also performed wider pointing movements towards targets appearing in the non-paretic workspace. The study was published in the June 2015 issue of Journal of NeuroEngineering and Rehabilitation.

“After enhancement of movement, patients started using their paretic limb more frequently. This suggests that changing patients' beliefs on their capabilities significantly improves the use of their paretic limb,” said lead author Belén Rubio, PhD, of the synthetic, perceptive, emotive, and cognitive systems lab at UFP. “This therapy could create a virtuous circle of recovery, in which positive feedback, spontaneous arm use, and motor performance can reinforce each other.”

Following stroke, loss of neural tissue induces drastic neurophysiological changes that often result in cognitive and motor impairments, such as hemiparesis; to counteract these deficits, patients tend to introduce compensatory movements, such as over-utilizing their non-paretic limb. Although these compensatory strategies may immediately improve functional motor performance in daily living or reduce the burden of using the paretic limb, a long period of non-use of the affected limb can lead to further loss of neural and behavioral function.

Related Links:
Universitat Pompeu Fabra
Hospital Universitari Vall d'Hebron

Gold Supplier
Enteral Feeding Pump
SENTINELplus
New
Blood Warmer
SAHARA-III 230 V
New
Mobile Radiography System
NeuVision 550M (Plus)
New
Double-Door Pass-Through Autoclave
150L - 700L Double-Door / Pass-Through

Print article

Channels

AI

view channel
Image: MyoVista Wavelet technology utilizes AI for early detection of heart disease (Photo courtesy of Heart Test Laboratories)

Novel ECG Technology Utilizes AI for Early Detection of Heart Disease

Cardiovascular disease is responsible for 17.9 million deaths every year, or about 32% of all deaths worldwide. Every week, millions of electrocardiographs (ECGs) are performed across the world, making... Read more

Surgical Techniques

view channel
Image: The Vena BDAC provides a superior solution to distal navigation (Photo courtesy of Vena Medical)

Category-Defining Balloon Distal Access Catheter Allows Surgeons to Get Much Closer to Blood Clots

Thrombectomy is a minimally invasive procedure for removing a blood clot and has now become standard of care treatment for patients with an acute ischemic stroke (AIS) secondary to a Large Vessel Occlusion (LVO).... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: Steripath improves the diagnostic accuracy and timeliness of sepsis test results (Photo courtesy of Magnolia)

All-in-One Device Reduces False-Positive Diagnostic Test Results for Bloodstream Infections

Blood cultures are considered the gold standard diagnostic test for the detection of blood stream infections, such as sepsis. However, positive blood culture results can be frequently wrong, and about... Read more

Business

view channel
Image: The global patient positioning systems market is projected to reach USD 1.7 billion by 2027 (Photo courtesy of Pexels)

Global Patient Positioning Systems Market Driven by Increasing Chronic Diseases

The global patient positioning systems market is projected to grow at a CAGR of 4% from USD 1.4 billion in 2022 to USD 1.7 billion by 2027, driven by increasing technological advancements in medical devices,... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.