We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Ready-Made Cardiac Patch Repairs Heart Attack Damage

By HospiMedica International staff writers
Posted on 23 Apr 2020
Print article
Image: A synthetic cardiac patch boosts recovery of damaged hearts (photo courtesy of NC State University)
Image: A synthetic cardiac patch boosts recovery of damaged hearts (photo courtesy of NC State University)
A new study describes how a freezable, cell-free, artificial cardiac patch can deliver healing factors directly to the site of myocardial injury.

Developed at the University of North Carolina (UNC; Chapel Hill, USA) and North Carolina State University (NC State; Raleigh, USA), the new off-the-shelf fully acellular artificial cardiac patch (artCP) is composed of a porcine-based decellularized myocardial extracellular matrix (ECM) scaffold and synthetic encapsulated secreted factors retrieved from isolated human cardiac stromal cells. The artCP thus contains all of the therapeutics secreted by the cells, but without live cells that could trigger an immune response.

In a rat model of acute myocardial infarction (MI), subsequent transplantation of the artCP supported cardiac recovery over a three-week period by promoting angiomyogenesis, reducing scarring by 30%, and improving cardiac function by 50%. The safety and efficacy of the artCP were further confirmed in a porcine model of MI. And while cellular-based scaffold patches need to be freshly prepared to maintain cell viability, the artCP can maintain its potency even after long-term cryopreservation. The study was published on April 8, 2020, in Science Translational Medicine.

“We have developed an artificial cardiac patch that can potentially solve the problems associated with using live cells, yet still deliver effective cell therapy to the site of injury. The patch can be frozen and safely stored for at least 30 days,” said senior author Professor Ke Cheng, PhD, of the NC State/UNC Joint Department of Biomedical Engineering. “Since there are no live cells involved, it will not trigger a patient’s immune system to reject it. It is a first step toward a truly off-the-shelf solution to cardiac patch therapy.”

Cell therapy for cardiac remodeling after MI is therapeutic, in part, because of the paracrine effects of factors secreted from human cardiac stromal cells. But low retention and engraftment of transplanted cells can limit potential therapeutic efficacy, while seeding of a scaffold material with cells to create cardiac patches that can be transplanted onto the surface of the heart is a costly, time-consuming procedure, and since they use live cellular material, can increase the risk of tumor formation and arrhythmia.

Related Links:
University of North Carolina
North Carolina State University


Gold Member
STI Test
Vivalytic Sexually Transmitted Infection (STI) Array
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Computerized Spirometer
DatospirAira

Print article

Channels

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.