We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
07 Dec 2020 - 11 Dec 2020
09 Dec 2020 - 18 Dec 2020
Virtual Venue

Toxin-Absorbing Nanosponges Battle Bacterial Infections

By HospiMedica International staff writers
Posted on 01 Jun 2015
Print article
Image: Nanosponge-hydrogel treats local bacterial infections (Image: courtesy of Weiwei Gao/UCSD).
Image: Nanosponge-hydrogel treats local bacterial infections (Image: courtesy of Weiwei Gao/UCSD).
Toxin-absorbing nanosponges could provide localized therapy against virulent Methicillin-resistant Staphylococcus aureus (MRSA) infections, according to a new study.

Researchers at the University of California, San Diego (UCSD; USA) and Fudan University (Shanghai, China) developed the unihybrid nanomaterial by mixed nanosponges—nanoparticles coated in a red blood cell (RBC) membrane that absorb dangerous toxins produced by MRSA, E. coli, and other antibiotic-resistant bacteria—into a hydrogel made of water and polymers. The optimized hydrogel composition helps retain the toxin-absorbing nanosponges (masquerading as RBCs) in place, while not compromising toxin transport into the gel for neutralization.

Just one RBC membrane can be used to make thousands of polymer core nanosponges, each with a diameter of approximately 85 nanometers, i.e., 3,000 times smaller than the original RBC. The number of toxins each nanosponge could absorb depended on the toxin; in the case of MRSA, one nanosponge can absorb approximately 85 alpha-hemolysin toxins. The nanosponges have a half-life of 40 hours and eventually are metabolized, together with the sequestered toxins, in the liver.

In a murine model, MRSA infected skin lesions that were treated with the nanosponge-hydrogel were significantly smaller than those that were left untreated. The researchers also showed that two days after they were injected underneath the skin of a mouse, nearly 80% of the nanosponge-hydrogels were still found at the injection site. When the nanosponges were injected without the hydrogel, only 20% of them remained at the injection site after just two hours, with most of them diffusing to the surrounding tissues. The study was published on April 31, 2015, in Advanced Materials.

“We combined the strengths of two different materials, nanosponges and hydrogels, to create a powerful formulation to treat local bacterial infections,” said senior author Prof. Liangfang Zhang, PhD, of the school of engineering. “Nanosponges alone are difficult to use on local tissues because they diffuse away to other parts of the body very quickly. By integrating the nanosponges into a hydrogel, we can retain them at the site of infection.”

Related Links:

University of California, San Diego
Fudan University

Print article


Copyright © 2000-2020 Globetech Media. All rights reserved.