We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Thermo Fisher Scientific - Direct Effect Media

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Toxin-Absorbing Nanosponges Battle Bacterial Infections

By HospiMedica International staff writers
Posted on 01 Jun 2015
Print article
Image: Nanosponge-hydrogel treats local bacterial infections (Image: courtesy of Weiwei Gao/UCSD).
Image: Nanosponge-hydrogel treats local bacterial infections (Image: courtesy of Weiwei Gao/UCSD).
Toxin-absorbing nanosponges could provide localized therapy against virulent Methicillin-resistant Staphylococcus aureus (MRSA) infections, according to a new study.

Researchers at the University of California, San Diego (UCSD; USA) and Fudan University (Shanghai, China) developed the unihybrid nanomaterial by mixed nanosponges—nanoparticles coated in a red blood cell (RBC) membrane that absorb dangerous toxins produced by MRSA, E. coli, and other antibiotic-resistant bacteria—into a hydrogel made of water and polymers. The optimized hydrogel composition helps retain the toxin-absorbing nanosponges (masquerading as RBCs) in place, while not compromising toxin transport into the gel for neutralization.

Just one RBC membrane can be used to make thousands of polymer core nanosponges, each with a diameter of approximately 85 nanometers, i.e., 3,000 times smaller than the original RBC. The number of toxins each nanosponge could absorb depended on the toxin; in the case of MRSA, one nanosponge can absorb approximately 85 alpha-hemolysin toxins. The nanosponges have a half-life of 40 hours and eventually are metabolized, together with the sequestered toxins, in the liver.

In a murine model, MRSA infected skin lesions that were treated with the nanosponge-hydrogel were significantly smaller than those that were left untreated. The researchers also showed that two days after they were injected underneath the skin of a mouse, nearly 80% of the nanosponge-hydrogels were still found at the injection site. When the nanosponges were injected without the hydrogel, only 20% of them remained at the injection site after just two hours, with most of them diffusing to the surrounding tissues. The study was published on April 31, 2015, in Advanced Materials.

“We combined the strengths of two different materials, nanosponges and hydrogels, to create a powerful formulation to treat local bacterial infections,” said senior author Prof. Liangfang Zhang, PhD, of the school of engineering. “Nanosponges alone are difficult to use on local tissues because they diffuse away to other parts of the body very quickly. By integrating the nanosponges into a hydrogel, we can retain them at the site of infection.”

Related Links:

University of California, San Diego
Fudan University

Print article


Surgical Techniques

view channel
Image: A minimally invasive diagnostic biomarker strategy has proven successful in detecting early esophageal cancer (Photo courtesy of Pexels)

Minimally Invasive Device Combined With Molecular Biomarkers Detects Early Esophageal Cancer

Esophageal cancer remains the sixth-most common cause of cancer death worldwide, claiming the lives of more than half a million people annually. Esophageal squamous cell carcinoma (ESCC) comprises 80%... Read more

Patient Care

view channel
Image: Future wearable health tech could measure gases released from skin (Photo courtesy of Pexels)

Wearable Health Tech Could Measure Gases Released From Skin to Monitor Metabolic Diseases

Most research on measuring human biomarkers, which are measures of a body’s health, rely on electrical signals to sense the chemicals excreted in sweat. But sensors that rely on perspiration often require... Read more

Health IT

view channel
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.