Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App





New Tool Monitors SARS-CoV-2 Mutations That Make It Difficult to Develop COVID-19 Vaccines and Drugs

By HospiMedica International staff writers
Posted on 11 Sep 2020
Scientists have developed a new tool containing information about all the protein structures that coincide with the SARS-CoV-2 (COVID-19) genome, including every known genetic mutation and its resultant mutant protein structure, to monitor mutations that make it difficult to develop COVID-19 vaccines and drugs.

Ensuring treatments remain effective as the virus mutates is a huge challenge for researchers. More...
The powerful new tool developed by scientists at the University of Melbourne (Melbourne, Australia) harnesses genomic and protein information about the virus and its mutations to aid COVID-19 drug and vaccine development. In order to develop the software tool and library, dubbed COVID-3D, the team analyzed the genome sequencing data of over 120,000 SARS-CoV-2 samples from infected people globally, including those that uniquely affect Australia, to identify mutations within each of the virus’ proteins. They tested and analyzed the mutations’ effects on their protein structure using computer simulations. This data was used to calculate all the biological effects of every possible mutation within the genome. To help researchers account for possible future mutations, the team analyzed mutations in the related coronaviruses SARS-CoV and Bat RaTG13.

Mutations or changes in an organism’s genetic material are natural ‘errors’ in the cell replication process. They can give the virus new ‘powers’ of survival, infectivity and virulence. Fortunately, the researchers found SARS-CoV-2 is mutating slower than other viruses such as influenza, with about two new changes in its genome every month. COVID-3D can help researchers recognize how mutations operate and identify more effective vaccine and drug targets. Several international universities and research institutions already use COVID-3D in vaccine and treatment development.

“Although the SARS-CoV-2 virus is a relatively new pathogen, its ability to readily accumulate mutations across its genes was evident from the start of this pandemic,” said University of Melbourne Associate Professor David Ascher. “In the context of therapeutic drug design and discovery, these mutations, and the patterns by which they accumulate within the virus’ protein structures, can affect the ability of vaccines and drugs to bind the virus, or to create a specific immune response against it. Because of this, scientists must not only try to control the virus, but outsmart it by predicting how it will change over time.”

Related Links:
University of Melbourne


Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Hemostatic Agent
HEMOBLAST Bellows
Digital Color Doppler Ultrasound System
MS22Plus
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: The collaboration will integrate Masimo’s innovations into Philips’ multi-parameter monitoring platforms (Photo courtesy of Royal Philips)

Philips and Masimo Partner to Advance Patient Monitoring Measurement Technologies

Royal Philips (Amsterdam, Netherlands) and Masimo (Irvine, California, USA) have renewed their multi-year strategic collaboration, combining Philips’ expertise in patient monitoring with Masimo’s noninvasive... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.