We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App





New MRI Technique Could Be Used to Detect Breast and Prostate Cancers

By HospiMedica International staff writers
Posted on 19 Jun 2023
Print article
Image: New MRI technique that captures COVID-19’s impact on the brain could also detect breast and prostate cancers (Photo courtesy of Freepik)
Image: New MRI technique that captures COVID-19’s impact on the brain could also detect breast and prostate cancers (Photo courtesy of Freepik)

Correlated diffusion imaging (CDI) is an innovative MRI technique that offers enhanced visualization of the movement of water molecules in tissue by combining and analyzing MRI signals obtained at different gradient pulse strengths and timings. Initially developed as a promising imaging tool for cancer detection, new research has now uncovered its potential for assessing various conditions, including COVID-19's impact on the brain as well as detecting breast and prostate cancers.

Engineers at the University of Waterloo (Waterloo, ON, Canada) had previously devised CDI as a means to enhance imaging measurements for cancer detection. Recognizing its capabilities, scientists at Baycrest’s Rotman Research Institute (Toronto, Canada) embarked on a groundbreaking study to explore CDI's potential in identifying brain changes associated with COVID-19. The subsequent tests confirmed the hypothesis. CDI revealed altered diffusion patterns in the frontal-lobe white matter, showing less restricted water molecule diffusion in COVID-19 patients. Simultaneously, it exhibited more restricted diffusion in the cerebellum of individuals affected by COVID-19.

The Rotman study is one of the few to shed light on the effects of COVID-19 on the brain. Significantly, it is the first to report diffusion abnormalities in the white matter of the cerebellum. While the study aimed to demonstrate changes rather than specific brain damage resulting from COVID-19, its final report does discuss potential sources of such alterations and their potential connections to diseases and damage. Future investigations could delve into whether COVID-19 leads to actual brain tissue damage and explore any potential changes in the brain's grey matter.

“Hopefully, this research can lead to better diagnoses and treatments for COVID-19 patients,” said Alexander Wong, a systems design engineering professor at University of Waterloo who developed CDI. “And that could just be the beginning for CDI as it might be used to understand degenerative processes in other diseases such as Alzheimer’s or to detect breast or prostate cancers.”

Related Links:
University of Waterloo
Rotman Research Institute 

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
New
Mobile Fetal Monitor
FTS-6 Mobile
New
Endocavity Needle Guide
Vitro PRO

Print article

Channels

Critical Care

view channel
Image: Tissue plasminogen activator working to dissolving brain clot and improving blood flow to the part of the brain being deprived (Photo courtesy of American Heart Association)

Injecting Clot-Dissolving Drug After Removing Large Brain Artery Clot Improves Stroke Outcomes

Approximately 1 in 5 ischemic strokes, which are caused by a clot, occur due to a blockage in a large artery in the brain (large vessel occlusions). The standard treatment for this type of stroke is the... Read more

Surgical Techniques

view channel
Image: The KeyScope low-cost laparoscope enables high resolution surgical imaging (Photo courtesy of Barnes et al., doi 10.1117/1.BIOS.2.2.022302)

Low-Cost, Robust Laparoscope Addresses Cost, Power and Sterilization Challenges

Laparoscopic surgery, a minimally invasive technique, has revolutionized surgical practices in high-income countries. This method involves using a laparoscope to perform operations through small incisions,... Read more

Patient Care

view channel
Image: The portable biosensor platform uses printed electrochemical sensors for the rapid, selective detection of Staphylococcus aureus (Photo courtesy of AIMPLAS)

Portable Biosensor Platform to Reduce Hospital-Acquired Infections

Approximately 4 million patients in the European Union acquire healthcare-associated infections (HAIs) or nosocomial infections each year, with around 37,000 deaths directly resulting from these infections,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.