We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Siemens Healthineers

Provides customized electronic systems and advanced imaging, diagnostics, therapy, and healthcare IT solutions for th... read more Featured Products: More products

Download Mobile App




Washing Techniques Compared for Preparation of Autologous Blood Transfusion

By HospiMedica International staff writers
Posted on 11 Oct 2022

Cell salvage is the process by which blood lost in surgery is collected and washed or filtered to produce autologous blood for re-transfusion to the patient. More...

Cell salvage aims to reduce the need for donor blood.

Centrifugal cell salvage washing technique is a preferred medical treatment in order to retain lost red blood cells (RBCs) without contaminants. Although this technology very efficiently collects and washes shed blood, it is costly and often impractical or unavailable, especially in middle- or low-income countries.

A team of clinical scientists working with the Sanquin Blood Bank (Amsterdam, the Netherlands) collected a total of nine whole blood units, 500 mL ± 10% in quadruple, and used bottom-and-top collection systems containing 70 mL of citrate-phosphate-dextrose (CPD, Fresenius Kabi, Emmer Compascuum, the Netherlands) at the Sanquin Blood Center to allow their temperatures to adjust to 20 to 24 ℃. The processing of the whole blood with the devices was initiated at around 16 hours after collection.

The laboratory study was designed to compare the centrifugation (autoLog, Medtronic, Eindhoven, the Netherlands), microfiltration (HemoClear BV, Zwolle, The Netherlands) and coarse filtration (Hemafuse, Sisu Global Health, Baltimore, MD, USA) techniques in their ability to remove non-cellular components and recover and concentrate the blood cells. Hematological parameters (cell count, hemoglobin concentration, hematocrit and mean corpuscular volume (MCV)) were obtained using an Advia 2120 hematology analyzer (Siemens Healthcare Nederland BV, Den Haag, the Netherlands).

The hematology team reported that the centrifugal technology confirmed its efficacy to remove potentially harmful solutes and capture red blood cells. The microfiltration technology (HemoClear) reached comparable levels of removal of solutes, with a potential advantage over centrifugal technology in the ability to also recover platelets. The coarse filtration technology (Hemafuse) had no washing capacity but, like the microfiltration technology, has the advantage of recovering platelets. Both filtration-based technologies recovered a significantly greater amount of platelets, with the coarse filtration having the highest recovery of platelets, 92% versus 67% with microfiltration. The mean-free hemoglobin concentration before processing was 11 ± 10 mg/L. The centrifugation procedure significantly increased mean-free hemoglobin concentration to 207 ± 22 mg/L.

The authors concluded that innovative filtration devices represent an alternative to centrifugal technology in the preparation of autologous blood for reinfusion. The HemoClear technology for the first time enables the recovery of washed platelets and red blood cells. Washing of blood cells with saline is necessary to remove non-cellular components and enable safe reinfusion. Both the centrifugation (autoLog) and microfiltration (HemoClear) technologies have a washing feature and effectively reduce the various non-cellular solutes. The study was published on September 30, 2022 in the Journal of Blood Medicine.

Related Links:
Sanquin Blood Bank
Fresenius Kabi
Medtronic
Sisu Global Health 
Siemens Healthcare Nederland BV 


Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Semi‑Automatic Defibrillator
Heart Save AED (ED300)
Radiation Safety Barrier
RayShield Intensi-Barrier
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to HospiMedica.com and get access to news and events that shape the world of Hospital Medicine.
  • Free digital version edition of HospiMedica International sent by email on regular basis
  • Free print version of HospiMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of HospiMedica International in digital format
  • Free HospiMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Surgical Techniques

view channel
Image: The AI-based approach identifies lipid regions matched well with histopathology results (Photo courtesy of Hyeong Soo Nam/KAIST)

AI-Based OCT Image Analysis Identifies High-Risk Plaques in Coronary Arteries

Lipid-rich plaques inside coronary arteries are strongly associated with heart attacks and other major cardiac events. While optical coherence tomography (OCT) provides detailed images of vessel structure... Read more

Patient Care

view channel
Image: The revolutionary automatic IV-Line flushing device set for launch in the EU and US in 2026 (Photo courtesy of Droplet IV)

Revolutionary Automatic IV-Line Flushing Device to Enhance Infusion Care

More than 80% of in-hospital patients receive intravenous (IV) therapy. Every dose of IV medicine delivered in a small volume (<250 mL) infusion bag should be followed by subsequent flushing to ensure... Read more

Business

view channel
Image: Medtronic’s intent to acquire CathWorks follows a 2022 strategic partnership with a co-promotion agreement for the FFRangio System (Photo courtesy of CathWorks)

Medtronic to Acquire Coronary Artery Medtech Company CathWorks

Medtronic plc (Galway, Ireland) has announced that it will exercise its option to acquire CathWorks (Kfar Saba, Israel), a privately held medical device company, which aims to transform how coronary artery... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.