We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




First Fabric-Based Sensor Enables Real-Time Monitoring of Physiological Signals

By HospiMedica International staff writers
Posted on 01 Feb 2023
Print article
Image: The new sensor makes use of PEDOT-Cl-coated cotton sandwiched between electrodes (Photo courtesy of UMass Amherst)
Image: The new sensor makes use of PEDOT-Cl-coated cotton sandwiched between electrodes (Photo courtesy of UMass Amherst)

Clothing fitted with tiny electromechanical sensors for remote detection of disease or physiological issues can continuously monitor the body’s movements and vital signs over long periods of time. However, the application of increased pressure such as when receiving a hug or taking a nap lying on the stomach overwhelms the sensor, interrupting the flow of data and making the sensor useless for monitoring. Now, a team of researchers have developed an all-fabric pressure sensor that works even when the pressure is pushing down on the wearer.

Researchers at the University of Massachusetts Amherst (Amherst, MA, USA) have synthesized a new material that resolves the problem of pressure, paving the way for wearable, unobtrusive sensitive sensors. The sensor remains operational even when hugged, sat upon, leaned on or squished by daily interactions. This is made possible by vapor-printing clothing fabrics with piezoionic materials like PEDOT-Cl (p-doped poly (3,4-ethylenedioxythiophene-chloride). With this method, even the smallest body movement, for instance a heartbeat, leads to the ions being redistributed throughout the sensor. Simply put, the fabric converts the body’s mechanical motion into an electrical signal, which can then be monitored.

“Imagine comfortable clothing that would monitor your body’s movements and vital signs continuously, over long periods of time,” said Trisha L. Andrew, professor of chemistry and chemical engineering at the University of Massachusetts Amherst, who led the team. “Such clothing would give clinicians fine-grained details for remote detection of disease or physiological issues.”

Zohreh Homayounfar, lead author of the study and a graduate student at UMass Amherst, stated that “this is the first fabric-based sensor allowing for real-time monitoring of sensitive target populations, from workers laboring in stressful industrial settings, to kids and rehabilitation patients.”

Related Links:
University of Massachusetts Amherst 

Gold Member
12-Channel ECG
CM1200B
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Glassware Washer
Tiva 10-1VL

Print article

Channels

Surgical Techniques

view channel
Image: Miniaturized electric generators based on hydrogels for use in biomedical devices (Photo courtesy of HKU)

Hydrogel-Based Miniaturized Electric Generators to Power Biomedical Devices

The development of engineered devices that can harvest and convert the mechanical motion of the human body into electricity is essential for powering bioelectronic devices. This mechanoelectrical energy... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.