We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Groundbreaking Biomaterial Injected Intravenously Repairs Cells and Tissue Damaged by Heart Attack and TBI

By HospiMedica International staff writers
Posted on 01 Feb 2023
Print article
Image: The new biomaterial heals tissues from the inside out (Photo courtesy of UC San Diego)
Image: The new biomaterial heals tissues from the inside out (Photo courtesy of UC San Diego)

Following a heart attack, there is development of scar tissue, which affects muscle function and can result in congestive heart failure. However, there is still no established treatment available for repairing the damage caused to cardiac tissue after a heart attack. Now, a newly-developed biomaterial that can be injected intravenously reduces inflammation in tissue and encourages cell and tissue repair. Researchers who developed the biomaterial also tested it and proved its effectiveness in treating tissue damage as a result of heart attacks in rodent as well as large animal models. They also provided proof of concept in a rodent model that the biomaterial may benefit patients with traumatic brain injury and pulmonary arterial hypertension.

In previous studies, a team of bioengineers and physicians at the University of California San Diego (La Jolla, CA, USA) had developed a hydrogel from the natural scaffolding of cardiac muscle tissue, also known as the extracellular matrix (ECM). This gel can be injected into damaged heart muscle tissue using a catheter and forms a scaffold in the damaged areas, promoting new cell growth and repair. The researchers had reported successful results from a phase 1 human clinical trial although the gel can only be used a week or more after a heart attack as it has to be injected directly into the heart muscle – risking damage caused by the needle-based injection procedure. This time, the team set out to develop a treatment that could be administered immediately after a heart attack. For this purpose, the team developed a biomaterial that could be infused into a blood vessel in the heart at the same time when other treatments such as angioplasty or a stent were being administered, or injected intravenously.

The researchers began with the hydrogel they had developed, which had proved to be compatible with blood injections in safety trials. However, the particle size in the hydrogel was too large to target leaky blood vessels. The researchers resolved this issue by putting the liquid precursor of the hydrogel through a centrifuge, enabling them to sift out bigger particles and retain only nano-sized particles. The resultant material was made to go through dialysis and sterile filtering before being freeze dried. After the addition of sterile water to the final powder, a biomaterial is obtained that can be injected intravenously or infused into a coronary artery in the heart. The new biomaterial offers the advantage of even distribution throughout the damaged tissue, as it is infused or injected intravenously. In contrast, hydrogel injected using a catheter stays in specific locations and does not spread out.

The researchers went on to test the biomaterial on a rodent model of heart attacks. The material was expected to pass through the blood vessels and into the tissue due to the development of gaps between endothelial cells in blood vessels after a heart attack. However, the researchers found that the biomaterial instead bound to those cells, closing the gaps and accelerating healing of the blood vessels, as a result of which inflammation was reduced. Testing the biomaterial in a porcine model of heart attack generated similar results. The team also successfully tested the hypothesis that the biomaterial could help treat other types of inflammation in rat models of traumatic brain injury and pulmonary arterial hypertension. The researchers will now undertake preclinical studies for these conditions with a study on the safety and efficacy of the biomaterial in human subjects expected to begin within one to two years.

“This biomaterial allows for treating damaged tissue from the inside out,” said Karen Christman, a professor of bioengineering at the University of California San Diego, and the lead researcher on the team that developed the material. “It’s a new approach to regenerative engineering.”

“We sought to design a biomaterial therapy that could be delivered to difficult-to-access organs and tissues, and we came up with the method to take advantage of the bloodstream - the vessels that already supply blood to these organs and tissues,” said Martin Spang, the paper’s first author. “While the majority of work in this study involved the heart, the possibilities of treating other difficult-to-access organs and tissues can open up the field of biomaterials/tissue engineering into treating new diseases.”

Related Links:
University of California San Diego

Gold Supplier
Enteral Feeding Pump
SENTINELplus
New
ICU Medical Ceiling Supply Unit
TT-PORT
New
Mammography Illuminator
Mammoline
New
Orthopedic Traction Set
OM-520

Print article
Radcal

Channels

AI

view channel
Image: Machine learning program can accurately predict a patient’s risk of death within a month, a year and five years (Photo courtesy of Pexels)

Machine Learning Programs Predict Mortality Risk by Analyzing Results from Routine Hospital Tests

Individuals having high blood pressure or symptoms of heart disease, such as chest pain, shortness of breath or an irregular heartbeat generally visit a hospital or an emergency department.... Read more

Surgical Techniques

view channel
Image: Lighting up tumors could help surgeons remove them more precisely (Photo courtesy of Pexels)

‘Molecular Imaging’ Lights up Tumors for Surgeons to Enable Precise Removal

Neuroblastoma is a devastating form of childhood cancer that accounts for 8-10% of all childhood cancers and roughly 15% of all childhood deaths from cancer. Sadly, in almost one-third of cases, the cancer... Read more

Health IT

view channel
Image: Using digital data can improve health outcomes (Photo courtesy of Unsplash)

Electronic Health Records May Be Key to Improving Patient Care, Study Finds

When a patient gets transferred from a hospital to a nearby specialist or rehabilitation facility, it is often difficult for personnel at the new facility to access the patient’s electronic health records... Read more

Point of Care

view channel
Image: The Profile System is a portable and fully automated immunodiagnostic device (Photo courtesy of Proxim Diagnostics)

Handheld Immunoanalyzer Performs Laboratory Tests near Patient without Sacrificing Sensitivity and Precision

Near Patient Testing (NPT), also known as Point of Care Testing (POCT), is a rapidly growing area within the field of In vitro diagnostics (IVDs). NPT is now recognized for its key role in making services... Read more

Business

view channel
Image: The demand for endometrial ablation devices is increasing due to rising prevalence of gynecological disorders (Photo courtesy of Pexels)

Global Endometrial Ablation Market Driven by Rising Prevalence of Gynecological Disorders

Gynecological disorders, such as menorrhagia, PCOD, abnormal vaginal bleeding, affect millions of women globally every year and are on the rise. Abnormal Uterine Bleeding (AUB) is the most common disorder... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.