We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Parametric Modeling Helps Determine Prosthetic Valve Size

By HospiMedica International staff writers
Posted on 02 Jan 2019
Print article
Image: Physical 3D printed models of patient aortic heart valves (Photo courtesy of Wyss Institute).
Image: Physical 3D printed models of patient aortic heart valves (Photo courtesy of Wyss Institute).
A new study describes how three-dimensional (3D) printing can evaluate how different valve sizes will interact with each patient's unique anatomy, before the procedure is actually performed.

Developed by researchers at the Max Planck Institute of Colloids and Interfaces (MPIKG; Potsdam, Germany), the Wyss Institute for Biologically Inspired Engineering (Boston, MA, USA), Massachusetts General Hospital (MGH; Boston, USA), and other institutions, the software program uses parametric modeling to generate virtual 3D models of the leaflets, using seven calcification coordinates visible on computerized tomography (CT) scans. The resulting model, which incorporates both leaflets and their associated calcified deposits, is then 3D printed.

The 3D-printed multi-material valve model incorporates flexible leaflets and rigid calcified deposits that mimic the artificial valve deployment, as well as providing haptic feedback. A custom sizer that fits inside the 3D-printed valve model is also printed and wrapped with a thin layer of pressure-sensing film to map the contacts between the sizer and the 3D-printed valves and their associated calcified deposits. The sizer is gradually expanded until the correct fit is achieved. Subsequently, the researchers conducted a retrospective study of 30 patients who underwent transcatheter aortic valve replacement (TAVR).

3D printed adjustable sizers were then positioned in the aortic root models and sequentially opened to larger valve sizes, progressively flattening the calcified leaflets against the aortic wall. Optimal valve size and fit were determined by visual inspection and quantitative pressure mapping of interactions between the sizer and models. The researchers found that pressure testing provided a physical map of areas with an inadequate seal that corresponded to areas of paravalvular leak, as demonstrated by post-procedural transthoracic echocardiogram (TTE). The study was published on October 2, 2018, in the Journal of Cardiovascular Computed Tomography.

“If you buy a pair of shoes online without trying them on first, there's a good chance they're not going to fit properly. Sizing replacement TAVR valves poses a similar problem, in that doctors don't get the opportunity to evaluate how a specific valve size will fit with a patient's anatomy before surgery,” said corresponding author James Weaver, PhD, of the Wyss Institute. “Our integrative 3D printing and valve sizing system provides a customized report of every patient's unique aortic valve shape, removing a lot of the guesswork and helping each patient receive a more accurately sized valve.”

“Being able to identify intermediate- and low-risk patients whose heart valve anatomy gives them a higher probability of complications from TAVR is critical, and we've never had a non-invasive way to accurately determine that before,” said study co-author Beth Ripley, MD, PhD, of the University of Washington (Seattle, USA). “Those patients might be better served by surgery, as the risks of an imperfect TAVR result might outweigh its benefits. Additionally, being able to physically simulate the procedure might inform future iterations of valve designs and deployment approaches.”

The leaflet modeling software and the 3D printing protocol are freely available online for researchers or clinicians who wish to use them.

Related Links:
Max Planck Institute of Colloids and Interfaces
Wyss Institute for Biologically Inspired Engineering
Massachusetts General Hospital

Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Supplier
128 Slice CT Scanner
Supria 128
New
Silver Supplier
Heavy-Duty Wheelchair Scale
6495 Stationary
New
Tissue Oximetry Sensor
ForeSight

Print article
Radcal

Channels

Critical Care

view channel
Image: The new blood test could prevent some of the 350,000 sepsis deaths in the U.S. annually (Photo courtesy of Cytovale)

Sepsis Test Could Save Lives in Emergency Departments, Study Suggests

Sepsis poses a severe, life-endangering illness that arises when an infection triggers a body-wide chain reaction, potentially causing multiple organs to fail quickly. Prompt and accurate diagnosis is... Read more

Surgical Techniques

view channel
Image: Suppressing production of an immune protein could reduce rejection of biomedical implants (Photo courtesy of 123RF)

Protein Identified for Immune Rejection of Biomedical Implants to Pave Way for Bio-Integrative Medical Devices

Biomedical implants like breast implants, pacemakers, and orthopedic devices have revolutionized healthcare, yet a substantial number of these implants face rejection by the body and have to be removed.... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Point of Care

view channel
Image: The broad-spectrum POC coagulometer is well-suited for emergency room and emergency vehicle use (Photo courtesy of Perosphere)

Novel POC Coagulometer with Lab-Like Precision to Revolutionize Coagulation Testing

In emergency settings, when patients arrive with a bleed or require urgent surgery, doctors rely solely on clinical judgment to determine if a patient is adequately anticoagulated for reversal treatment.... Read more

Business

view channel
Image: The global surgical lights market is expected to grow by close to USD 0.50 billion from 2022 to 2027 (Photo courtesy of Freepik)

Global Surgical Lights Market Driven by Increasing Number of Procedures

The global surgical lights market is set to witness high growth, largely due to the increasing incidence of chronic illnesses, a surge in demand for cosmetic and plastic surgeries, and untapped opportunities... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.