We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App




Mixed Reality Display Improves Cardiac Ablation Accuracy

By HospiMedica International staff writers
Posted on 09 Sep 2020
Print article
Image: The ELVIS creates a 3D augmented reality view of the heart (Photo courtesy of WUSTL)
Image: The ELVIS creates a 3D augmented reality view of the heart (Photo courtesy of WUSTL)
A real-time holographic mixed-reality display can significantly improve the electrophysiologist's point navigation and accuracy during cardiac ablation, according to a new study.

Developed by researchers at Washington University School of Medicine (WUSTL; St. Louis, MO, USA) and Sentiar (St. Louis, MO, USA), the Enhanced Electrophysiology Visualization and Interaction System (ELVIS) combines proprietary software with the Microsoft (Redmond, WA, USA) HoloLens headset to display three-dimensional (3D) digital images from a standard 2D electroanatomic mapping system (EAMS), along with real-time catheter locations.

The result is an augmented reality platform with real-time holographic visualization of the patient's actual anatomy "floating" over the surgical field, allowing electrophysiologists to perform the procedure by using their gaze to guide the controls. For the study, two electrophysiologists were trained on ELVIS, and then tested the system on 16 patients undergoing electrophysiology studies. The physicians were given 60 seconds to navigate to each of five target points within the geometry of the heart, using both the 3D ELVIS and standard 2D EAMS technology.

The results showed there was no difference in navigation times with either ELVIS or EAMS, but the physicians were significantly more accurate with ELVIS, with an error margin of just 2.99 mm, compared to 4.50 mm for EAMS. When translated to cardiac ablation outcomes, 34% of the ablation lesions created using EAMS would be made outside of the target area, as opposed to just 6% when using the ELVIS 3D display. The study was published on August 17, 2020, in Journal of the American College of Cardiology: Clinical Electrophysiology.

“Given the widespread promise of this technology, mixed reality has the potential to overtake and aggregate current displays in the cardiac catheterization laboratory,” concluded lead author Jennifer Silva, MD, director of pediatric electrophysiology at WUSTL. “What ended up being equally important, if not more important, was that…not only that we can visualize it better, but that we can control it. There are people working in this extended reality space who have come to conclusions that the control is the strongest value-add, particularly in medical applications.”

Catheter ablation is an invasive procedure used to obliterate faulty electrical pathways in the heart using radiofrequency (RF) energy in people suffering from cardiac arrhythmias such as atrial fibrillation (AF), atrial flutter, supraventricular tachycardias (SVT), and Wolff-Parkinson-White syndrome.

Related Links:
Washington University School of Medicine
Sentiar
Microsoft


Platinum Supplier
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Gold Supplier
12-Channel ECG
CM1200B
New
Gold Supplier
Oro-Nasal Mask
7500 Series
New
EEG Diagnostic Device
EEGDigiTrack multiEEG_42

Print article
Radcal

Channels

Critical Care

view channel
Image: The new blood test could prevent some of the 350,000 sepsis deaths in the U.S. annually (Photo courtesy of Cytovale)

Sepsis Test Could Save Lives in Emergency Departments, Study Suggests

Sepsis poses a severe, life-endangering illness that arises when an infection triggers a body-wide chain reaction, potentially causing multiple organs to fail quickly. Prompt and accurate diagnosis is... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The broad-spectrum POC coagulometer is well-suited for emergency room and emergency vehicle use (Photo courtesy of Perosphere)

Novel POC Coagulometer with Lab-Like Precision to Revolutionize Coagulation Testing

In emergency settings, when patients arrive with a bleed or require urgent surgery, doctors rely solely on clinical judgment to determine if a patient is adequately anticoagulated for reversal treatment.... Read more

Business

view channel
Image: The global surgical lights market is expected to grow by close to USD 0.50 billion from 2022 to 2027 (Photo courtesy of Freepik)

Global Surgical Lights Market Driven by Increasing Number of Procedures

The global surgical lights market is set to witness high growth, largely due to the increasing incidence of chronic illnesses, a surge in demand for cosmetic and plastic surgeries, and untapped opportunities... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.