We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App




Bioelectronic Device Treats Patients with Spasticity and Paralysis

By HospiMedica International staff writers
Posted on 08 Aug 2019
Print article
Image: A new device suppresses hyperexcitable spinal neurons (Photo courtesy of PathMaker Neurosystems).
Image: A new device suppresses hyperexcitable spinal neurons (Photo courtesy of PathMaker Neurosystems).
A non-invasive therapy that pairs trans-spinal direct current stimulation (tsDCS) and peripheral nerve direct current stimulation (pDCS) provides a novel approach to treat post-stroke spasticity.

The PathMaker Neurosystems (Boston, MA, USA) MyoRegulator is microprocessor-controlled device powered by rechargeable batteries that delivers paired tsDCS+pDCS stimulation to suppress the hyperexcitable spinal neurons involved with spasticity. Two pairs of sponge electrodes soaked with saline prior to application are used. One set of electrodes delivers up to 4 mA of tsDCS, with the anode placed on the spine at the C6 level, and the cathode placed above the iliac crest. In the pDCS set of electrodes, the anode is placed proximal to the cathode, on the median nerve, delivering 1 mA of direct current.

In a single-blind, sham-controlled, crossover design study that included 23 patients with upper limb hemiparesis and wrist spasticity at least 6 months after their initial stroke, results showed significant, durable group mean reductions from baseline in both Modified Tardieu Scale scores and objectively measured muscle resistance at the wrist flexor following active treatment, as compared to sham. Motor function also improved significantly, even without additional prescribed activity or training. The study was published in the July 2019 issue of Bioelectronic Medicine.

“Current pharmacological approaches to managing spasticity have, at best, short-term efficacy, are confounded by adverse effects, and are often unpleasant for the patient,” said study co-author Professor Zaghloul Ahmed, PhD, chairman of the department of physical therapy at City University of New York (NY, USA), and scientific founder of PathMaker Neurosystems. “The initial study results demonstrate the potential of a novel, non-invasive treatment to reduce spasticity and improve functional recovery in patients with upper motor neuron syndrome after stroke.”

Spasticity is a muscle control disorder caused by an imbalance between signals sent by the central nervous system (CNS) to the muscles. It often found in people with cerebral palsy, traumatic brain injury (TBI), SCI, stroke and multiple sclerosis (MS). It is characterized by increased muscle tone, overactive reflexes, involuntary movements such as spasms and clonus, pain, abnormal posture, contractures and bone and joint deformities. Spasticity presents a difficult challenge and is currently managed primarily by pharmacological agents and injected botulinum neurotoxins.

Related Links:
PathMaker Neurosystems

Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
LED Examination Light
LED 110

Print article

Channels

Critical Care

view channel
Image: Researchers have developed a novel risk score for cardiovascular complications after bone marrow transplant (Photo courtesy of 123RF)

Novel Tool Predicts Cardiovascular Risks after Bone Marrow Transplantation

Every year, thousands of people undergo bone marrow transplants to potentially cure serious diseases like leukemia, lymphoma, and immune deficiency disorders. While these transplants can be lifesaving,... Read more

Surgical Techniques

view channel
Image: The Early Bird Bleed Monitoring System provides visual and audible indicators of the onset and progression of bleeding events (Photo courtesy of Saranas)

Novel Technology Monitors and Lowers Bleeding Complications in Patients Undergoing Heart Procedures

Bleeding complications at the femoral access site can significantly hamper recovery, affecting the success of procedures, patient satisfaction, and overall healthcare costs. It is crucial for surgeons... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The new eye-safe laser technology can diagnose traumatic brain injury (Photo courtesy of 123RF)

Novel Diagnostic Hand-Held Device Detects Known Biomarkers for Traumatic Brain Injury

The growing need for prompt and efficient diagnosis of traumatic brain injury (TBI), a major cause of mortality globally, has spurred the development of innovative diagnostic technologies.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.