We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Bioelectronic Device Treats Patients with Spasticity and Paralysis

By HospiMedica International staff writers
Posted on 08 Aug 2019
Print article
Image: A new device suppresses hyperexcitable spinal neurons (Photo courtesy of PathMaker Neurosystems).
Image: A new device suppresses hyperexcitable spinal neurons (Photo courtesy of PathMaker Neurosystems).
A non-invasive therapy that pairs trans-spinal direct current stimulation (tsDCS) and peripheral nerve direct current stimulation (pDCS) provides a novel approach to treat post-stroke spasticity.

The PathMaker Neurosystems (Boston, MA, USA) MyoRegulator is microprocessor-controlled device powered by rechargeable batteries that delivers paired tsDCS+pDCS stimulation to suppress the hyperexcitable spinal neurons involved with spasticity. Two pairs of sponge electrodes soaked with saline prior to application are used. One set of electrodes delivers up to 4 mA of tsDCS, with the anode placed on the spine at the C6 level, and the cathode placed above the iliac crest. In the pDCS set of electrodes, the anode is placed proximal to the cathode, on the median nerve, delivering 1 mA of direct current.

In a single-blind, sham-controlled, crossover design study that included 23 patients with upper limb hemiparesis and wrist spasticity at least 6 months after their initial stroke, results showed significant, durable group mean reductions from baseline in both Modified Tardieu Scale scores and objectively measured muscle resistance at the wrist flexor following active treatment, as compared to sham. Motor function also improved significantly, even without additional prescribed activity or training. The study was published in the July 2019 issue of Bioelectronic Medicine.

“Current pharmacological approaches to managing spasticity have, at best, short-term efficacy, are confounded by adverse effects, and are often unpleasant for the patient,” said study co-author Professor Zaghloul Ahmed, PhD, chairman of the department of physical therapy at City University of New York (NY, USA), and scientific founder of PathMaker Neurosystems. “The initial study results demonstrate the potential of a novel, non-invasive treatment to reduce spasticity and improve functional recovery in patients with upper motor neuron syndrome after stroke.”

Spasticity is a muscle control disorder caused by an imbalance between signals sent by the central nervous system (CNS) to the muscles. It often found in people with cerebral palsy, traumatic brain injury (TBI), SCI, stroke and multiple sclerosis (MS). It is characterized by increased muscle tone, overactive reflexes, involuntary movements such as spasms and clonus, pain, abnormal posture, contractures and bone and joint deformities. Spasticity presents a difficult challenge and is currently managed primarily by pharmacological agents and injected botulinum neurotoxins.

Related Links:
PathMaker Neurosystems

Gold Member
12-Channel ECG
CM1200B
Gold Member
Real-Time Diagnostics Onscreen Viewer
GEMweb Live
Silver Member
Wireless Mobile ECG Recorder
NR-1207-3/NR-1207-E
New
Glassware Washer
Tiva 10-1VL

Print article

Channels

Surgical Techniques

view channel
Image: LUMISIGHT and Lumicell DVS offer 84% diagnostic accuracy in detecting residual cancer (Photo courtesy of Lumicell)

Cutting-Edge Imaging Platform Detects Residual Breast Cancer Missed During Lumpectomy Surgery

Breast cancer is becoming increasingly common, with statistics indicating that 1 in 8 women will develop the disease in their lifetime. Lumpectomy remains the predominant surgical intervention for treating... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.