We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Feather Safety Razor

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

mHealth Spectroscopy Measures Hemoglobin Optically

By HospiMedica International staff writers
Posted on 08 Jun 2020
Print article
Image: Professor Kim using the Hemoglobin smartphone app (Photo courtesy of Vincent Walter/ Purdue University)
Image: Professor Kim using the Hemoglobin smartphone app (Photo courtesy of Vincent Walter/ Purdue University)
A novel smartphone-based technique helps assess blood hemoglobin (Hgb) and blood disorders without drawing blood, claims a new study.

Developed at Purdue University (Lafayette, IN, USA), Vanderbilt University (Nashville, TN, USA), and Moi University (Nairobi, Kenya), the smartphone app is based on spectral super-resolution (SSR) spectroscopy, which transforms the built-in camera of a smartphone into a hyperspectral imager, without the need for hardware modifications or accessories. The Hgb measurements are based on statistical learning of SSR of the eyelids, and reconstruction of the detailed spectra from the camera’s three color RGB data. To perform an Hgb measurement, the patient pulls down the inner eyelid to expose the small blood vessels underneath.

A healthcare professional then uses the smartphone app to take pictures of the inner eyelids. The SSR then extracts the detailed spectral information from the camera's images and a computational algorithm quantifies Hgb content from the data. The mobile app also includes features designed to stabilize image quality and synchronize the smartphone flashlight so as to obtain consistent images. The inner eyelid was selected as the sensing site because microvasculature is easily visible there, and it is not affected by skin color, which eliminates the need for any personal calibrations.

With the aid of a randomly selected group of 138 patients who had conventional blood tests at the Moi University Teaching and Referral Hospital, the researchers first trained the algorithm, and then tested the mobile health app with the remaining 15 volunteers. The results showed that the prediction errors for the smartphone technique were within 5-10% of those measured with clinical laboratory blood tests. They now plan to use the mobile health tool to assess nutritional status, anemia, and sickle cell disease. The study was published in the June 2020 issue of Optica.

“This new technology could be very useful for detecting anemia, which is characterized by low levels of blood hemoglobin. This is a major public health problem in developing countries, but can also be caused by cancer and cancer treatments,” said senior author Professor Young Kim, PhD, of Purdue University. "The COVID-19 pandemic has greatly increased awareness of the need for expanded mobile health and telemedicine services.”

Related Links:
Purdue University
Vanderbilt University
Moi University



Print article

Channels

Critical Care

view channel
Image: EsoGuard has demonstrated over 90% specificity and 90% sensitivity in identifying Barrett’s Esophagus (Photo courtesy of Lucid Diagnostics)

Biomarker Based Non-Endoscopic Technology Identifies Risk for Esophageal Cancer

Barrett's esophagus (BE) is the benign and treatable precursor condition to esophageal adenocarcinomas (EAC) which is usually diagnosed at an advanced stage and is difficult to treat. Finding BE, a sign... Read more

Surgical Techniques

view channel
Image: Novel surface treatment could prevent deadly hospital infections without antibiotics (Photo courtesy of Penn State)

Novel Surface Treatment Stops Microbes from Adhering to Medical Devices

Hospitals and medical clinics can be the source of nasty infections, resulting in death from infection-related complications and billions in direct medical costs. The biggest culprits, experts say - accounting... Read more

Health IT

view channel
Image: AI can reveal a patient`s heart health (Photo courtesy of Mayo Clinic)

AI Trained for Specific Vocal Biomarkers Could Accurately Predict Coronary Artery Disease

Earlier studies have examined the use of voice analysis for identifying voice markers associated with coronary artery disease (CAD) and heart failure. Other research groups have explored the use of similar... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.