We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Personalized Robotic Platform Rehabilitates Disorganized Gait

By HospiMedica International staff writers
Posted on 06 Feb 2019
Print article
Image: The Optimal-G Pro personalized gait platform (Photo courtesy of Motorika).
Image: The Optimal-G Pro personalized gait platform (Photo courtesy of Motorika).
An advanced gait rehabilitation system uses enhanced learning intelligence technology (ELITE) to provide optimal neuromuscular re-education and brain retraining.

The Motorika (Mount Laurel, NJ, USA) Optimal-G Pro system integrates clinical principles of gait rehabilitation and motor learning with expertise in robotic technology to restore natural physiological gait patterns in both adults and pediatric patients following neurological trauma or orthopedic injury. The system provides real-time video biofeedback through front and side cameras that offer superior visualization in order to reinforce proper gait biomechanics. ELITE proactively adjusts the patient's treatment plan, based on objective clinical data and their individual progress.

Neuromuscular re-education and brain retraining are facilitated by intensive and repetitive reciprocal motion, recovering normal gait patterns and improves ambulatory capabilities, balance, stability, and posture. By continuously analyzing functional abilities, therapists can provide recommendations and correct adjustments based on treatment parameters, enabling improved decision-making, progressing therapy programs, and enhancing patient care.

The Optimal-G Pro system is designed to allow for natural gait kinematic movements of the hip, knee, and ankle during walking by helping to provide three-dimensional (3D) freedom of movement of the pelvis, including lateral shift, rotation and up/down vectors. Optimal weight bearing and pressure distribution are provided by shifting load from the robotic support to the patient’s lower limbs, using an ergonomically designed harness and foot-lifters. In addition, the system provides muscle resistance measurement, passive, active, and active-assist modes of therapy, 18 physiological gait profiles, interactive games, and virtual reality.

“Robot rehabilitation solutions enable therapists to enhance traditional treatments. For example, they can be easily used under the supervision of one therapist, providing intensive, task-oriented gait training, as part of a set of rehabilitation tools that additionally include other non-robotic approaches,” said Arik Avni, co-CEO of Motorika. “Thanks to ELITE, the Optimal-G Pro enables rehabilitation professionals, for the first time, to offer a proactive motor learning technology that personalizes patient therapy and ultimately accelerates recovery.”

Human gait is defined as bipedal, biphasic forward propulsion of the center of gravity of the human body, in which there are alternate sinuous movements of different segments of the body with least expenditure of energy. Different gait patterns are characterized by differences in limb-movement patterns, overall velocity, forces, kinetic and potential energy cycles, and changes in the contact with the surface.

Related Links:
Motorika

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Gold Member
Disposable Protective Suit For Medical Use
Disposable Protective Suit For Medical Use
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Hysteroscopic Fluid Management System
HysteroFlow/HysteroBalance II

Print article

Channels

Surgical Techniques

view channel
Image: The device\'s LEDs light up in several colors, allowing surgeons to see which areas they need to operate on (Photo courtesy of UC San Diego)

Flexible Microdisplay Visualizes Brain Activity in Real-Time To Guide Neurosurgeons

During brain surgery, neurosurgeons need to identify and preserve regions responsible for critical functions while removing harmful tissue. Traditionally, neurosurgeons rely on a team of electrophysiologists,... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.