We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




3D-Printed Mesh Facilitates Orthopedic Brace Manufacture

By HospiMedica International staff writers
Posted on 04 Jul 2019
Print article
Image: Examples of 3D-printed meshes (Photo courtesy of MIT).
Image: Examples of 3D-printed meshes (Photo courtesy of MIT).
A new study suggests that additive manufacturing (AM) of biomechanically tailored flexible meshes could lead to personalized wearable and implantable devices.

Developed at the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), the meshes are fabricated by extrusion of thermoplastic polyurethane using a continuous AM tool path to tailor the elasticity of the mesh cells via slack modification and modulation of the filament–filament bonding. The resulting mesh configuration resembles a tough, pliable fabric with directionally specific inversion stiffness. The wider the spacing of the unit cells, the more the mesh can be stretched at low strain before becoming stiffer, a design principle that tailors the mesh's degree of flexibility and helps it mimic soft tissue.

The pliable mesh can also be hardened by printing stainless steel fibers over regions of the elastic mesh where stiffer properties are needed, and then printing a third elastic layer over the steel to sandwich the stiffer thread into the mesh. The combination of both stiff and elastic materials provides the mesh with the ability to stretch easily up to a point, after which it starts to stiffen. The meshes can also be designed as an auxetic structure, a structure that becomes wider when pulled. Auxetic structures can also support highly curved surfaces of the body.

To demonstrate the capabilities of the new mesh, the researchers fashioned an ankle brace with directionally specific inversion stiffness arising from the embedded mesh, which can provide stronger support to prevent, for instance, a muscle from overstraining. They mesh's structure prevents the ankle from turning inward, while still allowing the joint to move freely in other directions. The tensile mesh mechanics of the brace were engineered to match the nonlinear response of muscle. The researchers also fabricated a knee brace that conforms to the knee as it bends, and a glove with a 3D-printed mesh sewn into its top surface, which conforms to a wearer's knuckles. The study was published on June 19, 2019, in Advanced Functional Materials.

“We were trying to think of how we can make 3D-printed constructs more flexible and comfortable, like textiles and fabrics. One of the reasons textiles are so flexible is that the fibers are able to move relative to each other easily,” said lead author mechanical engineer Sebastian Pattinson, PhD. “There's potential to make all sorts of devices that interface with the human body. Surgical meshes, orthoses, even cardiovascular devices like stents; you can imagine all potentially benefiting from the kinds of structures we show.”

Additive manufacturing describes technologies that build 3D objects using computer-aided design (CAD) modeling software, machine equipment, and layering material. Once a CAD sketch is produced, the data is relayed to the printer, which lays downs or adds successive layers of liquid, powder, sheet material or other, in a layer-upon-layer fashion to fabricate a 3D object. Many technologies are included in this definition, such as rapid prototyping, direct digital manufacturing, layered manufacturing, and additive fabrication.

Related Links:
Massachusetts Institute of Technology

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Anesthesia Workstation
X40

Print article

Channels

Surgical Techniques

view channel
Image: The device\'s LEDs light up in several colors, allowing surgeons to see which areas they need to operate on (Photo courtesy of UC San Diego)

Flexible Microdisplay Visualizes Brain Activity in Real-Time To Guide Neurosurgeons

During brain surgery, neurosurgeons need to identify and preserve regions responsible for critical functions while removing harmful tissue. Traditionally, neurosurgeons rely on a team of electrophysiologists,... Read more

Patient Care

view channel
Image: The newly-launched solution can transform operating room scheduling and boost utilization rates (Photo courtesy of Fujitsu)

Surgical Capacity Optimization Solution Helps Hospitals Boost OR Utilization

An innovative solution has the capability to transform surgical capacity utilization by targeting the root cause of surgical block time inefficiencies. Fujitsu Limited’s (Tokyo, Japan) Surgical Capacity... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.