We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Comen Medical

Download Mobile App

DNA-based Vaccine Could Deliver Potent and Long-Lasting Responses to COVID-19

By HospiMedica International staff writers
Posted on 28 Apr 2020
Print article
Scancell Holdings plc, (Oxford, UK), a developer of novel immunotherapies for the treatment of cancer, has initiated a research program to develop a novel DNA vaccine for COVID-19.

The research program will be in collaboration with scientists from the newly established Centre for Research on Global Virus Infections and the new Biodiscovery Institute at the University of Nottingham (Nottingham, UK) and Nottingham Trent University (Nottingham, UK).

Scancell’s DNA vaccines target dendritic cells to stimulate high avidity T cells that survey and destroy diseased cells. This approach was highly successful with Scancell’s lead ImmunoBody cancer vaccine, SCIB1, which was safely administered to patients with malignant melanoma, and mediated excellent five-year survival in a Phase 1/2 clinical trial. Scancell’s aim is to utilize its proven clinical expertise in cancer to produce a simple, safe, cost-effective and scalable vaccine to induce both durable T cell responses and virus neutralizing antibodies (VNAbs) against COVID-19.

As research data emerges, it is becoming increasingly clear that the induction of potent and activated T cells may play a critical role in the development of long-term immunity and clearance of virus-infected cells. Although other vaccines may reach the clinic earlier, the company believes its combined T cell and antibody approach should give more potent and long-lasting responses, ultimately leading to better protection. Scancell’s DNA vaccine will target the SARS-CoV-2 nucleocapsid (N) protein and the key receptor-binding domain of the spike (S) protein to generate both T cell responses and VNAbs against the SARS-CoV-2 virus. The N protein is highly conserved amongst coronaviruses; therefore, this new vaccine has the potential to generate protection not only against SARS-CoV-2, but also against new strains of coronavirus that may arise in the future.

Virologists at the University of Nottingham’s Centre for Research on Global Virus Infections have identified parts of the novel coronavirus that they hope will generate an immune response that will prevent future infection by the novel coronavirus. This information is being used by Scancell to design DNA-based vaccines to allow easy and effective delivery of the virus vaccine into humans to produce virus killing antibodies and T cells. Scientists at the University of Nottingham and Nottingham Trent University will contribute essential virology expertise to help develop a safe and effective vaccine by assisting Scancell to adapt its existing cancer vaccine platform for the development of a new vaccine. They will screen the new vaccine for its capacity to trigger immune responses against COVID-19, prior to the new approaches being tested in healthy volunteers.

“Vaccines are the long-term solution and we believe our combined high avidity T cell and neutralizing antibody approach has the potential to produce a second-generation vaccine that will generate an effective and durable immune response to COVID-19,” said Professor Lindy Durrant, Chief Scientific Officer Scancell.

“Focusing the antibody responses on the receptor binding domain of the SARS-CoV-2 virus should ensure the generation of high-titre antibodies that prevent infection,” said Professor Jonathan Ball, Director of the Centre for Research on Global Virus Infections at the University of Nottingham. “Delivering these virus targets using Scancell’s DNA vaccine platform, which has already been shown to be safe and effective in cancer patients, should enable rapid translation into the clinic for prevention of COVID-19.”

Related Links:
University of Nottingham
Nottingham Trent University

Print article



view channel
Image: Respicardia’s remedē System (Photo courtesy of Respicardia, Inc.)

Zoll Medical Acquires CSA Systems Manufacturer Respicardia

ZOLL Medical Corporation (Chelmsford, MA, USA), an Asahi Kasei company, has acquired Respicardia, Inc. (Minnetonka, MN, USA), a provider of novel implantable neurostimulators for the treatment of moderate... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.