We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
GLOBETECH PUBLISHING LLC

Download Mobile App





Automated System for SARS-CoV-2 Analysis in Wastewater to Enable Early Detection of COVID-19 Prevalence and Mutants

By HospiMedica International staff writers
Posted on 22 Mar 2021
Print article
Image: Automated System for SARS-CoV-2 Analysis (Photo courtesy of Robotic Biology Institute Inc.)
Image: Automated System for SARS-CoV-2 Analysis (Photo courtesy of Robotic Biology Institute Inc.)
A joint project aims to establish an automated analytical system that enables mass diagnosis by early detection of viral disease prevalence and mutants, based on wastewater-based epidemiology.

Hokkaido University (Sapporo, Japan) and Robotic Biology Institute Inc. (RBI; Tokyo, Japan), along with iLAC Co., Ltd., and Shionogi & Co., Ltd. have entered into a memorandum of understanding (MOU) for the establishment of an automated system for the analysis of the novel coronavirus (SARS-CoV-2) in wastewater.

It has been suggested that the novel coronavirus (SARS-CoV-2) can propagate by infecting intestinal epithelial cells. SARS-CoV-2 has been detected in the feces of a significant proportion of infected individuals including those without gastrointestinal symptoms. SARS-CoV-2 excreted in the feces of COVID-19 patients eventually come together at wastewater treatment plants. Therefore, research into wastewater-based epidemiology (WBE) of SARS-CoV-2, which acquires population-level epidemiological information by routine monitoring of the virus in wastewater, has been accelerating across the world. WBE has been reported in scientific papers to be extremely useful for early detection of the spread of COVID-19 and the confirmation of successful mitigation of the disease prevalence in a given region.

In Japan, there have been fewer reported cases of COVID-19 infection per capita compared to the US and some European countries and regions, and therefore, the concentrations of SARS-CoV-2 in Japanese wastewater tend to be lower than those in other countries. Hokkaido University and Shionogi had entered into a collaborative research agreement in October 2020 to develop a virus detection method with an increased sensitivity. As a result of the collaborative research, a highly sensitive method of SARS-CoV-2 detection in wastewater has been successfully developed.

For societal implementation of WBE, the establishment of a high throughput analysis system of the collected wastewater samples is urgently needed. For this purpose, RBI and iLAC have joined the existing collaborations between Hokkaido University and Shionogi. RBI has the technology for automated SARS-CoV-2 detection/quantification and library preparation for next-generation sequencing (NGS) analysis using LabDroid “Maholo,” a versatile humanoid robot made in Japan; iLAC is capable of elucidating genomic information (e.g., viral genome mutations) based on massive NGS analysis. They will help develop an automated analysis system for WBE of SARS-CoV-2.

Related Links:
Hokkaido University
Robotic Biology Institute Inc.


Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Gold Member
POC Blood Gas Analyzer
Stat Profile Prime Plus
Silver Member
Compact 14-Day Uninterrupted Holter ECG
NR-314P
New
Computerized Spirometer
DatospirAira

Print article

Channels

Critical Care

view channel
Image: The stretchable microneedle electrode arrays (Photo courtesy of Zhao Research Group)

Stretchable Microneedles to Help In Accurate Tracking of Abnormalities and Identifying Rapid Treatment

The field of personalized medicine is transforming rapidly, with advancements like wearable devices and home testing kits making it increasingly easy to monitor a wide range of health metrics, from heart... Read more

Patient Care

view channel
Image: The portable, handheld BeamClean technology inactivates pathogens on commonly touched surfaces in seconds (Photo courtesy of Freestyle Partners)

First-Of-Its-Kind Portable Germicidal Light Technology Disinfects High-Touch Clinical Surfaces in Seconds

Reducing healthcare-acquired infections (HAIs) remains a pressing issue within global healthcare systems. In the United States alone, 1.7 million patients contract HAIs annually, leading to approximately... Read more

Health IT

view channel
Image: First ever institution-specific model provides significant performance advantage over current population-derived models (Photo courtesy of Mount Sinai)

Machine Learning Model Improves Mortality Risk Prediction for Cardiac Surgery Patients

Machine learning algorithms have been deployed to create predictive models in various medical fields, with some demonstrating improved outcomes compared to their standard-of-care counterparts.... Read more

Point of Care

view channel
Image: The Quantra Hemostasis System has received US FDA special 510(k) clearance for use with its Quantra QStat Cartridge (Photo courtesy of HemoSonics)

Critical Bleeding Management System to Help Hospitals Further Standardize Viscoelastic Testing

Surgical procedures are often accompanied by significant blood loss and the subsequent high likelihood of the need for allogeneic blood transfusions. These transfusions, while critical, are linked to various... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.